linoleic-acid and 4-bromophenacyl-bromide

linoleic-acid has been researched along with 4-bromophenacyl-bromide* in 3 studies

Other Studies

3 other study(ies) available for linoleic-acid and 4-bromophenacyl-bromide

ArticleYear
Lysophosphatidylcholine and arachidonic acid are required in the cytotoxic response of human natural killer cells to tumor target cells.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 1999, Volume: 9, Issue:6

    Treatment of human natural killer (NK) cells with phospholipase A(2) (PLA(2)) inhibitors, mepacrine and 4-bromophenacyl bromide (BPB), diminished their ability to lyse K562 target cells by as much as 100%. The ability of NK cells to bind to K562 cells was significantly affected by BPB above 2 microM, but not by mepacrine at any concentration tested. This indicates that BPB is having effects on NK cells unrelated to its inhibition of PLA(2) activity at concentrations above 2 microM. The activation of phospholipase C in response to K562 cell binding (as measured by inositol phosphate turnover) was unaffected by inhibition of the PLA(2) activity. The products of PLA(2) catabolism are a fatty acid (often arachidonic acid) and a lysophospholipid. Inhibition of NK cytotoxicity by mepacrine or BPB is reversed significantly when lysophosphatidylcholine, but no other lysolipid, is added back to the NK cells before assaying for cytotoxicity. Arachidonic acid, but not linoleic acid, also significantly reverses inhibition of NK cytotoxicity. Finally, the 15-lipoxygenase product, 15S-hydroperoxyeicosatetraenoic acid (15S-HPETE), is also able to reverse mepacrine-induced inhibition of NK cytotoxicity. The 5-lipoxygenase product 5S-HPETE was not effective. These data indicate that PLA(2) activation is a necessary signal in human NK cytotoxicity and that it is not involved in protein tyrosine kinase and subsequent phospholipase C activation; these latter two enzymes are also required in the cytotoxic response. Thus PLA(2) activation is either a more distal signal, dependent on activation of some earlier signal, or an independent cosignal stimulated by tumor-target binding which generates lysophosphatidylcholine, arachidonic acid, and/or a lipoxygenase product(s).

    Topics: Acetophenones; Arachidonic Acid; Cytotoxicity, Immunologic; Enzyme Inhibitors; Humans; K562 Cells; Killer Cells, Natural; Leukotrienes; Linoleic Acid; Lipid Peroxides; Lysophosphatidylcholines; Phospholipases A; Quinacrine

1999
Evidence that free fatty acids in trophocytes of Periplaneta americana fat body may be regulated by the activity of phospholipase A2 and cyclooxygenase.
    Insect biochemistry and molecular biology, 1997, Volume: 27, Issue:7

    Previous studies have shown that palmitic, stearic, oleic and linoleic acid levels in trophocytes prepared from the fat body of male Periplaneta americana are increased following treatment of the cells with hypertrehalosemic hormone (HTH). Melittin, an activator of phospholipase A2, mimicked the action of HTH by increasing the free fatty acid content in a concentration-dependent manner. The increase caused by HTH could be eliminated by pretreatment of the trophocytes with 1 mM 4'-bromophenacyl bromide (BPB), an inhibitor of phospholipase A2. BPB also decreases the concentration of free fatty acids in trophocytes not treated with HTH but by a smaller margin. Nordihydroguaiaretic acid (NDGA) and indomethacin, inhibitors of lipoxygenase and cyclooxygenase, respectively, eliminated the increase in free fatty acids evoked by HTH. In the absence of HTH both inhibitors increased the free fatty acid content of the trophocytes, an effect consistent with the known mode of action of these agents. None of the inhibitors tested, all of which blocked HTH activated trehalose synthesis, prevented activation of phosphorylase by HTH. This is taken as evidence that other downstream sites are also important in the regulation of trehalose production by the fat body. It is suggested that the increase in free fatty acids evoked by HTH, or metabolites of those fatty acids, may regulate the synthesis and release of trehalose from the trophocytes because of potential effects on trehalose phosphate synthase, trehalose 6-phosphate phosphatase, and the trehalose transport mechanism in the trophocyte membrane.

    Topics: Acetophenones; Animals; Cyclooxygenase Inhibitors; Enzyme Activation; Enzyme Inhibitors; Fat Body; Fatty Acids; Indomethacin; Insect Hormones; Linoleic Acid; Male; Masoprocol; Melitten; Neuropeptides; Oleic Acid; Palmitic Acid; Periplaneta; Phospholipases A; Phospholipases A2; Prostaglandin-Endoperoxide Synthases; Stearic Acids; Trehalose

1997
Selective inhibition of free arachidonic acid production in activated alveolar macrophages by calmodulin antagonists.
    Biochemical and biophysical research communications, 1988, Oct-31, Volume: 156, Issue:2

    The effect of calmodulin antagonists on the amounts of free fatty acids produced by rabbit alveolar macrophages was determined by fluorometric high-performance liquid chromatography. Opsonized zymosan-induced arachidonic acid production was dramatically suppressed in the presence of W-7 and trifluoperazine without an effect on the production of other fatty acids. Calmodulin antagonists inhibited phospholipase A and abolished the release of arachidonic acid from phospholipids. The present results suggest that a zymosan-sensitive pool of 20:4, which is different from that of other fatty acids, is present in macrophages and that calmodulin antagonists selectively inhibit phospholipase A, which preferentially degrades phospholipids with 20:4.

    Topics: Acetophenones; Animals; Arachidonic Acid; Arachidonic Acids; Calmodulin; Chlorpromazine; Chromatography, High Pressure Liquid; Cytochalasin B; Linoleic Acid; Linoleic Acids; Macrophage Activation; Macrophages; Oleic Acid; Oleic Acids; Opsonin Proteins; Phosphatidylcholines; Phosphatidylinositols; Phospholipases A; Pulmonary Alveoli; Quinacrine; Rabbits; Sulfonamides; Trifluoperazine; Zymosan

1988