linoleic-acid and 25-hydroxycholesterol

linoleic-acid has been researched along with 25-hydroxycholesterol* in 2 studies

Other Studies

2 other study(ies) available for linoleic-acid and 25-hydroxycholesterol

ArticleYear
Influence of lipid environment on insulin binding in cultured hepatoma cells.
    Biochimica et biophysica acta, 1987, May-18, Volume: 928, Issue:3

    The influence of alterations of plasma membrane physico-chemical properties on insulin binding have been characterized in an insulin-sensitive rat hepatoma cell line adapted to grow for several generations in culture medium enriched with linoleic acid (18:2) or with 25-hydroxycholesterol. The cells took up 18:2 and 25-hydroxycholesterol added to the culture medium, without exhibiting any sign of intolerance or intoxication. These compounds respectively increased and decreased membrane fluidity at 37 degrees C. The cells demonstrated extensive changes in insulin binding parameters in response to experimental modifications of their membrane lipid composition. When determined at 4 degrees C, insulin receptors were present in the control cells at 136,000 sites/cell but this fell to 111,000 (P less than 0.05) in cells enriched in 18:2, and rose to 176,000 (P less than 0.001) in hydroxysterol-grown cells. According to a two-site model, the main effect of 18:2 was a significant increase of the number of high-affinity sites with a concomitant decrease of low-affinity sites. The hydroxysterol had the opposite effects on these parameters. The high-affinity insulin binding capacity of the hepatoma cells was affected by lipid supplementation in a similar way, whether it was determined at 4 degrees C or at 37 degrees C. Assuming a negative cooperativity model, 18:2 enhanced the degree of negative cooperativity among the sites, while 25-hydroxycholesterol reduced it. The time-course of insulin-induced receptor down-regulation was accelerated in the cells enriched in polyunsaturated fatty acids, but reduced in cells exposed to 25-hydroxycholesterol. These insulin-binding alterations cannot be directly related to modifications of cellular growth rate, receptor internalization or membrane fluidity per se, and are discussed as being more likely due to membrane lipid composition than to overall cell metabolism modifications.

    Topics: Animals; Cell Division; Cell Line; Cell Membrane; Hydroxycholesterols; Insulin; Linoleic Acid; Linoleic Acids; Liver; Liver Neoplasms, Experimental; Membrane Fluidity; Membrane Lipids; Rats; Receptor, Insulin

1987
Modifications of cellular lipids induce insulin resistance in cultured hepatoma cells.
    Biochimica et biophysica acta, 1987, May-18, Volume: 928, Issue:3

    We altered the cellular lipid composition of an insulin sensitive rat hepatoma cell line through supplementation of the culture medium with linoleic acid (18:2) or 25-hydroxycholesterol, and we studied the effects on insulin stimulation of aminoacid transport system A and glycogen synthesis. The basal rate of sodium-dependent aminoisobutyric acid uptake was slightly reduced in hydroxysterol-treated cells and increased in 18:2-enriched cells. Maximal insulin stimulation of transport was decreased by about 40% in both 18:2 and 25-hydroxycholesterol modified cells, as compared to control cells. In addition to reduced responsiveness, the hydroxysterol-treated cells also showed a diminished sensitivity to insulin, as revealed by a right-shift of the dose-response curve leading to a ED50 of 1.2 X 10(-8) M (P less than 0.02), as compared to 2.45 X 10(-9) M in control cells and 2.13 X 10(-9) M in 18:2 enriched cells. Concerning glycogen synthesis, the basal rate was unaffected by 25-hydroxycholesterol supplementation and slightly reduced in cells enriched in 18:2. Maximal insulin stimulation of glycogen synthesis was reduced by about 40% in both types of lipid modified cells. 25-Hydroxycholesterol again provoked a decrease in sensitivity to insulin: the ED50 was enhanced to 4.9 X 10(-9) M (P less than 0.05), as compared to 1.25 X 10(-9) M in control cells and 1.57 X 10(-9) M in 18:2-supplemented cells. Taken together with the previously reported changes of insulin binding to lipid modified hepatoma cells (Bruneau et al. (1987) Biochim. Biophys. Acta 928, 287-296) our results demonstrate an influence of alterations of the cellular lipid composition on both binding and biological actions of insulin, leading to an insulin-resistant state. Divergences between insulin binding and action were obtained and it was suggested that post-binding events may be responsible for the observed changes. Our findings may be relevant to experimental and clinical states of insulin resistance.

    Topics: Amino Acids; Animals; Biological Transport; Hydroxycholesterols; Insulin; Insulin Resistance; Kinetics; Linoleic Acid; Linoleic Acids; Liver; Liver Glycogen; Liver Neoplasms, Experimental; Membrane Fluidity; Membrane Lipids; Rats; Receptor, Insulin; Sodium

1987