linoleic-acid and 2-3-bis(3--hydroxybenzyl)butane-1-4-diol

linoleic-acid has been researched along with 2-3-bis(3--hydroxybenzyl)butane-1-4-diol* in 2 studies

Other Studies

2 other study(ies) available for linoleic-acid and 2-3-bis(3--hydroxybenzyl)butane-1-4-diol

ArticleYear
Cholesterol induces surface localization of polyphenols in model membranes thus enhancing vesicle stability against lysozyme, but reduces protection of distant double bonds from reactive-oxygen species.
    Biochimica et biophysica acta, 2016, Volume: 1858, Issue:7 Pt A

    The main scope of the present study was to analyze the membrane interaction of members of different classes of polyphenols, i.e. resveratrol, naringenin, epigallocatechin gallate and enterodiol, in model systems of different compositions and phase states. In addition, the possible association between membrane affinity and membrane protection against both lipid oxidation and bilayer-disruptive compounds was studied. Gibbs monolayer experiments indicated that even though polyphenols showed poor surface activity, it readily interacted with lipid films. Actually, a preferential interaction with expanded monolayers was observed, while condensed and cholesterol-containing monolayers decreased the affinity of these phenolic compounds. On the other hand, fluorescence anisotropy studies showed that polyphenols were able to modulate membrane order degree, but again this effect was dependent on the cholesterol concentration and membrane phase state. In fact, cholesterol induced a surface rather than deep into the hydrophobic core localization of phenolic compounds in the membranes. In general, the polyphenolic molecules tested had a better antioxidant activity when they were allowed to get inserted into the bilayers, i.e. in cholesterol-free membranes. On the other hand, a membrane-protective effect against bilayer permeabilizing activity of lysozyme, particularly in the presence of cholesterol, could be assessed. It can be hypothesized that phenolic compounds may protect membrane integrity by loosely covering the surface of lipid vesicles, once cholesterol push them off from the membrane hydrophobic core. However, this cholesterol-driven distribution may lead to a reduced antioxidant activity of linoleic acid double bonds.

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Antioxidants; Catechin; Cholesterol; Dimyristoylphosphatidylcholine; Flavanones; Fluorescence Polarization; Hydrophobic and Hydrophilic Interactions; Lignans; Linoleic Acid; Lipid Bilayers; Lipid Peroxidation; Liposomes; Muramidase; Reactive Oxygen Species; Resveratrol; Stilbenes; Surface Properties

2016
Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone.
    Molecular and cellular biochemistry, 1999, Volume: 202, Issue:1-2

    The antioxidant activities of the flaxseed lignan secoisolariciresinol diglycoside (SDG) and its mammalian lignan metabolites, enterodiol (ED) and enterolactone (EL), were evaluated in both lipid and aqueous in vitro model systems. All three lignans significantly (p < or = 0.05) inhibited the linoleic acid peroxidation at both 10 and 100 microM over a 24-48 h of incubation at 40 degrees C. In a deoxyribose assay, which evaluates the non site-specific and site-specific Fenton reactant-induced *OH scavenging activity, SDG demonstrated the weakest activity compared to ED and EL at both 10 and 100 microM; the greatest *OH scavenging for ED and EL was observed at 100 microM in both assays. The incubation of pBR322 plasmid DNA with Fenton reagents together with SDG, ED or EL showed that the inhibition of DNA scissions was concentration dependent. The greatest non site-specific activity of lignans was at 100 microM, thus, confirming the results of the deoxyribose test. In contrast, the protective effect of SDG and EL in the site-specific assay was lost and that of ED was minimal. Therefore, the results indicate a structure-activity difference among the three lignans with respect to specific antioxidant efficacy. All three lignans did not exhibit reducing activity compared to ascorbic acid, therefore, did not possess indirect prooxidant activity related to potential changes in redox state of transition metals. The efficacy of SDG and particularly the mammalian lignans ED and EL to act as antioxidants in lipid and aqueous in vitro model systems, at relatively low concentrations (i.e. 100 microM), potentially achievable in vivo, is an evidence of a potential anticarcinogenic mechanism of flaxseed lignan SDG and its mammalian metabolites ED and EL.

    Topics: 4-Butyrolactone; Animals; Antioxidants; Butylene Glycols; Emulsions; Estrogens; Flax; Free Radical Scavengers; Glucosides; Hydroxides; Lignans; Linoleic Acid; Lipid Peroxidation; Mammals; Oxidation-Reduction; Seeds

1999