linoleic-acid has been researched along with 2-2-bis(4-glycidyloxyphenyl)propane* in 2 studies
2 other study(ies) available for linoleic-acid and 2-2-bis(4-glycidyloxyphenyl)propane
Article | Year |
---|---|
Neuroprotective effects of arachidonic acid against oxidative stress on rat hippocampal slices.
Arachidonic acid (AA), 5,8,11,14-eicosateraenoic acid is abundant, active and necessary in the human body. In the present study, we reported the neuroprotective effects and mechanism of arachidonic acid on hippocampal slices insulted by glutamate, NaN(3) or H(2)O(2)in vitro. Different types of models of brain injury in vitro were developed by 1mM glutamate, 10mM NaN(3) or 2mM H(2)O(2). After 30 min of preincubation with arachidonic acid or linoleic acid, hippocampal slices were subjected to glutamate, NaN(3) or H(2)O(2), then the tissue activities were evaluated by using the 2,3,5-triphenyltetrazolium chloride method. Endogenous antioxidant enzymes activities (SOD, GSH-PX and catalase) in hippocampal slices were evaluated during the course of incubation. MK886 (5 microM; a noncompetitive inhibitor of proliferator-activated receptor [PPAR]alpha), BADGE (bisphenol A diglycidyl ether; 100 microM; an antagonist of PPARgamma) and cycloheximide (CHX; 30 microM; an inhibitor of protein synthesis) were tested for their effects on the neuroprotection afforded by arachidonic acid. Population spikes were recorded in randomly selected hippocapal slices. Arachidonic acid (1-10 microM) dose dependently protected hippocampal slices from glutamate and H(2)O(2) injury (P<0.01), and arachidonic acid (10 microM) can significantly improve the activities of Cu/Zn-SOD in hippocampal slices after 1h incubation. In addition, 10 microM arachidonic acid significantly increased the activity of Mn-SOD and catalase, and decreased the activities of Cu/Zn-SOD to control value after 3h incubation. These secondary changes of SOD during incubation can be reversed by indomethacine (10 microM; a nonspecific cyclooxygenase inhibitor) or AA 861 (20 microM; a 5-lipoxygenase inhibitor). Its neuroprotective effect was completely abolished by BADGE and CHX. These observations reveal that arachidonic acid can defense against oxidative stress by boosting the internal antioxidant system of hippocampal slices. Its neuroprotective effect may be mainly mediated by the activation of PPARgamma and synthesis of new protein in tissue. Topics: Animals; Arachidonic Acid; Benzhydryl Compounds; Benzoquinones; Brain Ischemia; Catalase; Cycloheximide; Epoxy Compounds; Glutathione Peroxidase; Hippocampus; Indoles; Indomethacin; Linoleic Acid; Lipoxygenase Inhibitors; Male; Neuroprotective Agents; Oxidative Stress; Protein Synthesis Inhibitors; Rats; Rats, Sprague-Dawley; Superoxide Dismutase | 2006 |
Zinc modulates PPARgamma signaling and activation of porcine endothelial cells.
Dietary zinc has potent antioxidant and anti-inflammatory properties and is a critical component of peroxisome proliferator-activated receptor (PPAR) gene expression and regulation. To assess the protective mechanisms of PPARgamma in endothelial cell dysfunction and the role of zinc in the modulation of PPARgamma signaling, cultured porcine pulmonary artery endothelial cells were exposed to the membrane-permeable zinc chelator N,N,N'N'-tetrakis (2-pyridylmethyl)-ethylene diamine (TPEN), thiazolidinedione (TZD; PPARgamma agonist) or bisphenol A diglycidyl ether (BADGE; PPARgamma antagonist). Subsequently, endothelial cells were activated by treatment with linoleic acid (90 micro mol/L) for 6 h. Zinc chelation by TPEN increased the DNA binding activity of nuclear factor (NF)-kappaB and activator protein (AP)-1, decreased PPARgamma expression and activation as well as up-regulated interleukin (IL)-6 expression and production. These effects were fully reversed by zinc supplementation. In addition, exposure to TZD down-regulated linoleic acid-induced DNA binding activity of NF-kappaB and AP-1, whereas BADGE further induced activation of these oxidative stress-sensitive transcription factors. Most importantly, the TZD-mediated down-regulation of NF-kappaB and AP-1 and reduced inflammatory response were impaired during zinc chelation. These data suggest that zinc plays a critical role in PPARgamma signaling in linoleic acid-induced endothelial cell activation and indicate that PPARgamma signaling is impaired during zinc deficiency. Topics: Animals; Benzhydryl Compounds; Cells, Cultured; Chelating Agents; Diet; DNA; Electrophoretic Mobility Shift Assay; Endothelium, Vascular; Epoxy Compounds; Ethylenediamines; Interleukin-6; Linoleic Acid; NF-kappa B; Pulmonary Artery; Receptors, Cytoplasmic and Nuclear; Signal Transduction; Swine; Thiazolidinediones; Transcription Factor AP-1; Transcription Factors; Zinc | 2003 |