linoleic-acid has been researched along with 19-hydroxy-5-8-11-14-eicosatetraenoic-acid* in 2 studies
2 other study(ies) available for linoleic-acid and 19-hydroxy-5-8-11-14-eicosatetraenoic-acid
Article | Year |
---|---|
Serum polyunsaturated fatty acid metabolites as useful tool for screening potential biomarker of colorectal cancer.
The biomarker identification of cancer is benefit for early detection and less invasion. Polyunsaturated fatty acid (PUFA) metabolite as inflammatory mediators can affect progression and treatment of cancer. In this work, the serum was collected from colorectal cancer patients and healthy volunteers, and then we tested the change of serum PUFA metabolites in both of them by ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Of the 158 PUFA and their metabolites, we found that abnormal change of 2, 3-dinor-8-iso-PGF2α, 19-HETE and 12-keto-LTB4 from arachidonic acid were observed in colorectal cancer patients. Meanwhile, 9-HODE and 13-HODE from linoleic acid were significant lower in colorectal cancer patients. Our data suggested that some PUFA metabolites might be used as a potential biomarker of colorectal cancer, which might provide assistance in clinical diagnosis and treatment. Topics: Adult; Aged; Arachidonic Acid; Biomarkers; Chromatography, High Pressure Liquid; Colorectal Neoplasms; Fatty Acids, Unsaturated; Female; Humans; Hydroxyeicosatetraenoic Acids; Linoleic Acid; Male; Middle Aged; Tandem Mass Spectrometry | 2017 |
The biosynthesis of oxylipins of linoleic and arachidonic acids by the sewage fungus Leptomitus lacteus, including the identification of 8R-Hydroxy-9Z,12Z-octadecadienoic acid.
When the sewage fungus Leptomitus lacteus was grown in liquid culture aerobically and then transferred to medium containing long-chain fatty acids, it produced a number of oxygenated fatty acids. From linoleic acid (18:2n-6), the major metabolite produced was R-8-hydroxy-9Z,12Z-octadecadienoic acid (8R-HODE), with additional quantities of 8,11-di-HODE, 11,16-di-HODE, and 11,17-di-HODE. Other fatty acid derivatives identified included 7-HODE, 10-HODE, and 13-hydroxy-octadecamonoenoic acid. Arachidonic acid (20:4n-6) was metabolized primarily to 18- and 19-hydroxy-eicosatetraenoic acids (18- and 19-HETE) also as R enantiomers, along with smaller quantities of 17-HETE, 9-HETE, 14,15-dihydroxy-eicosatrienoic acid and 11,12,19-trihydroxy-eicosatrienoic acid. The oxygenated products of long-chain fatty acids, in particular the biosynthesis of 8R-HODE, a compound classified as a precocious sporulation inducer, were similar to those produced by an unrelated fungal species in the Ascomycota, the take-all fungus Gaeumannomyces graminis. As in G. graminis, the biotransformation of linoleate to 8R-HODE was not significantly inhibited by exposure of the organism to CO. This indicated that the enzyme responsible for 8R-HODE biosynthesis in Leptomitus could be similar to that of G. graminis; yet we did not detect 7,8-di-HODE as a product of 18:2n-6 metabolism as in G. graminis. CO did inhibit the biosynthesis of 14,15-di-HETE, 18-HETE, and 19-HETE in L. lacteus, which suggested the involvement of a cytochrome P450-type monooxygenase. The biosynthesis of 8R-HODE from 18:2n-6 was found to occur in certain cell lysates, specifically in low speed (15,000 x g) supernatant, following cell disruption. Topics: Arachidonic Acid; Hydroxyeicosatetraenoic Acids; Linoleic Acid; Linoleic Acids; Oomycetes; Oxygen; Sewage | 2000 |