linezolid and telavancin

linezolid has been researched along with telavancin* in 6 studies

Other Studies

6 other study(ies) available for linezolid and telavancin

ArticleYear
In vitro activity of telavancin against a contemporary worldwide collection of Staphylococcus aureus isolates.
    Antimicrobial agents and chemotherapy, 2010, Volume: 54, Issue:6

    The activity of telavancin and comparators was assessed against a contemporary (2007 and 2008) global collection of 10,000 isolates of Staphylococcus aureus. Telavancin was very active against methicillin-susceptible and -resistant S. aureus (MSSA and MRSA, respectively; MIC(50/90) for both, 0.12/0.25 microg/ml; 100.0% susceptible). This agent was 2-, 4-, and 8-fold more potent than daptomycin (MIC(90), 0.5 microg/ml), vancomycin or quinupristin-dalfopristin (MIC(90), 1 microg/ml), and linezolid (MIC(90), 2 microg/ml) against MRSA, respectively. These data show a potent activity of telavancin tested against a current global collection of S. aureus.

    Topics: Acetamides; Aminoglycosides; Anti-Bacterial Agents; Daptomycin; Drug Resistance, Bacterial; Humans; In Vitro Techniques; Linezolid; Lipoglycopeptides; Methicillin Resistance; Methicillin-Resistant Staphylococcus aureus; Microbial Sensitivity Tests; Oxazolidinones; Staphylococcal Infections; Staphylococcus aureus; Vancomycin; Virginiamycin

2010
Comparative efficacies of human simulated exposures of telavancin and vancomycin against methicillin-resistant Staphylococcus aureus with a range of vancomycin MICs in a murine pneumonia model.
    Antimicrobial agents and chemotherapy, 2010, Volume: 54, Issue:12

    Telavancin displays potent in vitro and in vivo activity against methicillin-resistant Staphylococcus aureus (MRSA), including strains with reduced susceptibility to vancomycin. We compared the efficacies of telavancin and vancomycin against MRSA strains with vancomycin MICs of ≥1 μg/ml in a neutropenic murine lung infection model. Thirteen clinical MRSA isolates (7 vancomycin-susceptible, 2 vancomycin-heteroresistant [hVISA], and 4 vancomycin-intermediate [VISA] isolates) were tested after 24 h, and 7 isolates (1 hVISA and 4 VISA isolates) were tested after 48 h of exposure. Mice were administered subcutaneous doses of telavancin at 40 mg/kg of body weight every 12 h (q12h) or of vancomycin at 110 mg/kg q12h; doses were designed to simulate the area under the concentration-time curve for the free, unbound fraction of drug (fAUC) observed for humans given telavancin at 10 mg/kg q24h or vancomycin at 1 g q12h. Efficacy was expressed as the 24- or 48-h change in lung bacterial density from pretreatment counts. At dose initiation, the mean bacterial load was 6.16 ± 0.26 log(10) CFU/ml, which increased by averages of 1.26 ± 0.55 and 1.74 ± 0.68 log in untreated mice after 24 and 48 h, respectively. At both time points, similar CFU reductions were noted for telavancin and vancomycin against MRSA, with vancomycin MICs of ≤2 μg/ml. Both drugs were similarly efficacious after 24 and 48 h of treatment against the hVISA strains tested. Against VISA isolates, telavancin reduced bacterial burdens significantly more than vancomycin for 1 of 4 isolates after 24 h and for 3 of 4 isolates after 48 h. These data support the potential utility of telavancin for the treatment of MRSA pneumonia caused by pathogens with reduced susceptibility to vancomycin.

    Topics: Aminoglycosides; Animals; Anti-Bacterial Agents; Disease Models, Animal; Female; Lipoglycopeptides; Methicillin-Resistant Staphylococcus aureus; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Pneumonia; Staphylococcal Infections; Vancomycin

2010
In vitro activities of telavancin and six comparator agents against anaerobic bacterial isolates.
    Antimicrobial agents and chemotherapy, 2009, Volume: 53, Issue:9

    The antimicrobial activities of telavancin and six comparators were evaluated against 460 isolates of anaerobic bacteria. Telavancin demonstrated excellent activity against gram-positive anaerobes (MIC90, 2 microg/ml) and was the most potent agent tested against Clostridium difficile (MIC90, 0.25 microg/ml). As expected, gram-negative isolates were not inhibited by telavancin.

    Topics: Aminoglycosides; Anti-Bacterial Agents; Bacteria, Anaerobic; Clostridioides difficile; Gram-Negative Bacteria; Gram-Positive Bacteria; Lipoglycopeptides; Microbial Sensitivity Tests

2009
Comparative surveillance study of telavancin activity against recently collected gram-positive clinical isolates from across the United States.
    Antimicrobial agents and chemotherapy, 2008, Volume: 52, Issue:7

    Telavancin is an investigational, rapidly bactericidal lipoglycopeptide antibiotic that is being developed to treat serious infections caused by gram-positive bacteria. A baseline prospective surveillance study was conducted to assess telavancin activity, in comparison with other agents, against contemporary clinical isolates collected from 2004 to 2005 from across the United States. Nearly 4,000 isolates were collected, including staphylococci, enterococci, and streptococci (pneumococci, beta-hemolytic, and viridans). Telavancin had potent activity against Staphylococcus aureus and coagulase-negative staphylococci (MIC range, 0.03 to 1.0 microg/ml), independent of resistance to methicillin or to multiple agents. Telavancin activity was particularly potent against all streptococcal groups (MIC(90)s, 0.03 to 0.12 microg/ml). Telavancin had excellent activity against vancomycin-susceptible enterococci (MIC(90), 1 microg/ml) and was active against VanB strains of vancomycin-resistant enterococci (MIC(90), 2 microg/ml) but less active against VanA strains (MIC(90), 8 to 16 microg/ml). Telavancin also demonstrated activity against vancomycin-intermediate S. aureus and vancomycin-resistant S. aureus strains (MICs, 0.5 microg/ml to 1.0 microg/ml and 1.0 microg/ml to 4.0 microg/ml, respectively). These data may support the efficacy of telavancin for treatment of serious infections with a wide range of gram-positive organisms.

    Topics: Aminoglycosides; Anti-Bacterial Agents; Drug Resistance, Bacterial; Enterococcus; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Humans; Lipoglycopeptides; Microbial Sensitivity Tests; Prospective Studies; Staphylococcus aureus; Streptococcus; Streptococcus pneumoniae; United States

2008
In vitro activity of telavancin against resistant gram-positive bacteria.
    Antimicrobial agents and chemotherapy, 2008, Volume: 52, Issue:7

    The in vitro activity of telavancin was tested against 743 predominantly antimicrobial-resistant, gram-positive isolates. Telavancin was highly active against methicillin-resistant staphylococci (MIC(90), 0.5 to 1 microg/ml), streptococci (all MICs, < or =0.12 microg/ml), and VanB-type enterococci (all MICs, < or =2 microg/ml). Time-kill studies demonstrated the potent bactericidal activity of telavancin.

    Topics: Aminoglycosides; Anti-Bacterial Agents; Drug Resistance, Bacterial; Enterococcus; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Humans; In Vitro Techniques; Lipoglycopeptides; Methicillin Resistance; Microbial Sensitivity Tests; Staphylococcus; Streptococcus

2008
In vitro activity of telavancin against gram-positive clinical isolates recently obtained in Europe.
    Antimicrobial agents and chemotherapy, 2007, Volume: 51, Issue:9

    The in vitro activity of telavancin was tested against 620 gram-positive isolates. For staphylococci, MICs at which 50 and 90% of isolates were inhibited (MIC(50) and MIC(90)) were both 0.25 microg/ml, irrespective of methicillin resistance. MIC(50) and MIC(90) were 0.25 and 0.5 microg/ml for vancomycin-susceptible enterococci and 1 and 2 microg/ml for vancomycin-resistant enterococci, respectively. Streptococcus pneumoniae, group A and B beta-hemolytic streptococci, and viridans streptococci were inhibited by < or =0.12 microg/ml.

    Topics: Aminoglycosides; Anti-Bacterial Agents; Drug Resistance, Multiple, Bacterial; Europe; Gram-Positive Bacteria; Gram-Positive Bacterial Infections; Humans; Lipoglycopeptides; Methicillin Resistance; Microbial Sensitivity Tests; Staphylococcus aureus; Streptococcus agalactiae; Streptococcus pyogenes; Vancomycin Resistance; Viridans Streptococci

2007