linalool has been researched along with gamma-aminobutyric acid in 2 studies
*gamma-Aminobutyric Acid: The most common inhibitory neurotransmitter in the central nervous system. [MeSH]
*gamma-Aminobutyric Acid: The most common inhibitory neurotransmitter in the central nervous system. [MeSH]
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 1 (50.00) | 2.80 |
Authors | Studies |
---|---|
Aoshima, H; Hamamoto, K; Hara, Y; Hossain, SJ | 1 |
Han, SK; Jang, SH; Jung, WK; Kim, J; Park, SJ; Phuong, TNT; Rijal, S | 1 |
2 other study(ies) available for linalool and gamma-aminobutyric acid
Article | Year |
---|---|
Effects of tea components on the response of GABA(A) receptors expressed in Xenopus Oocytes.
Topics: Acyclic Monoterpenes; Animals; Catechin; Drug Synergism; Female; gamma-Aminobutyric Acid; Gene Expression; Membrane Potentials; Monoterpenes; Oocytes; Plant Extracts; Receptors, GABA-A; Recombinant Proteins; RNA, Complementary; Tea; Terpenes; Transfection; Xenopus laevis | 2002 |
GABA- and Glycine-Mimetic Responses of Linalool on the Substantia Gelatinosa of the Trigeminal Subnucleus Caudalis in Juvenile Mice: Pain Management through Linalool-Mediated Inhibitory Neurotransmission.
Topics: Acyclic Monoterpenes; Animals; Disease Models, Animal; Female; gamma-Aminobutyric Acid; Glycine; Male; Mice; Pain Management; Substantia Gelatinosa; Synaptic Transmission; Trigeminal Caudal Nucleus | 2021 |