linagliptin and alogliptin

linagliptin has been researched along with alogliptin* in 25 studies

Reviews

12 review(s) available for linagliptin and alogliptin

ArticleYear
SODIUM GLUCOSE COTRANSPORTER 2 AND DIPEPTIDYL PEPTIDASE-4 INHIBITION: PROMISE OF A DYNAMIC DUO.
    Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists, 2017, Volume: 23, Issue:7

    This article reviews evidence supporting sodium glucose cotransporter 2 (SGLT2) inhibitor and dipeptidyl peptidase-4 (DPP-4) inhibitor combination therapy for management of type 2 diabetes mellitus (T2DM).. We conducted a nonsystematic review of the literature focusing on single-pill or fixed-dose combinations of SGLT2 inhibitors and DPP-4 inhibitors available in the United States.. SGLT2 inhibitors and DPP-4 inhibitors have complementary mechanisms of action that address several of the underlying pathophysiologic abnormalities present in T2DM without overlapping toxicities. The combination of these 2 agents has several advantages including a low risk of hypoglycemia, the potential for weight loss, the ability to coformulate into a pill with once-daily administration, and the possibility to use with other classes of glucose-lowering agents. Cardiovascular outcomes trials reported to date support the safety of the DPP-4 class and suggest possible cardioprotective effects for SGLT2 inhibitors - at least based on the first reported study that used empagliflozin. Recent clinical evidence shows that SGLT2 inhibitor/DPP-4 inhibitor therapy is an effective combination for T2DM treatment, providing glycated hemoglobin (HbA1c) reductions of 1.1 to 1.5%, and weight reductions of approximately 2 kg when added to metformin, which is its primary place in therapy.. The combination of an SGLT2 inhibitor/DPP-4 inhibitor is a safe and effective treatment choice for patients with T2DM who are unable to obtain adequate glycemic control with metformin therapy, cannot use metformin, or have a higher baseline HbA1c.. BP = blood pressure; CI = confidence interval; CVOT = cardiovascular outcomes; DKA = diabetic ketoacidosis; DPP-4 = dipeptidyl peptidase-4; EXAMINE = EXamination of cArdiovascular outcoMes with alogliptiN versus standard of carE in patients with type 2 diabetes mellitus and acute coronary syndrome; FDA = Food and Drug Administration; HbA1c = glycated hemoglobin; HR = hazard ratio; MACE = major adverse cardiovascular events; SAVOR-TIMI 53 = Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Type 2 Diabetes Mellitus; SBP = systolic blood pressure; SGLT2 = sodium glucose cotransporter 2; TECOS = Trial to Evaluate Cardiovascular Outcomes after Treatment with Sitagliptin; T2DM = type 2 diabetes mellitus; XR = extended release.

    Topics: Adamantane; Benzhydryl Compounds; Blood Glucose; Canagliflozin; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Drug Therapy, Combination; Glucosides; Humans; Hypoglycemia; Hypoglycemic Agents; Linagliptin; Metformin; Piperidines; Sitagliptin Phosphate; Sodium-Glucose Transporter 2 Inhibitors; Treatment Outcome; Uracil

2017
DPP-4 inhibitors and cardiovascular disease in type 2 diabetes mellitus. Expectations, observations and perspectives.
    Nutrition, metabolism, and cardiovascular diseases : NMCD, 2016, Volume: 26, Issue:4

    Cardiovascular disease (CVD) is the greatest burden of type 2 diabetes mellitus (T2DM) in terms of morbility, mortality and costs for individuals and societies. Therefore, its prevention is a major goal in diabetes care. Optimal treatment of hyperglycemia is certainly instrumental to CVD prevention. Optimal treatment means both establishing the most appropriate glycemic target for the given individual and selecting the medication(s) with the most favourable benefit/safety ratio. CVD safety, if not a clear CVD benefit, is certainly required for all antidiabetic agents. Dipeptidyl-peptidase-4 (DPP-4) inhibitors are among the classes of antidiabetic agents most recently made available for diabetes care. A major question to be addressed is the effect of these compounds on CVD. Expectations were high for their mechanism of action, which targets also post-prandial glucose and minimize hypoglycemia risk, thereby providing a sort of global glucose control, and for some potentially beneficial extra-glycemic effects. This article reviews the existing literature on this issue.. Data published so far document that DPP-4 inhibitors have a wide spectrum of glycemic and extra-glycemic effects potentially reducing the risk of CVD as well as favourable effects on intermediate or surrogate CVD endpoints. These data heralded a better CVD outcome. Accordingly, pooling CVD safety data from phase 3 and 4 studies conducted with DPP-4 inhibitors suggested that their use might translate into a better CVD outcome. Data from three CVD outcome RCTs with alogliptin, saxagliptin and sitagliptin documented no harm but did not show any benefit on major CVD events. A modest but significant increased risk of hospitalization for heart failure was observed with saxagliptin and with alogliptin (only in subjects with no history of heart failure before randomization) but not with sitagliptin. A study currently in progress with linagliptin will provide further insights in the issue of CVD safety and benefit.. It should be considered that most alternative oral antidiabetic agents generally do not possess a better CVD risk profile than DPP-4 inhibitors and that some of them, indeed, should be used with caution because of potentially adverse effects on heart and vasculature. Overall, the selection of antidiabetic agent(s) with the most favourable CVD profile is mandatory but still challenging in diabetes care.

    Topics: Cardiovascular Diseases; Clinical Trials, Phase III as Topic; Clinical Trials, Phase IV as Topic; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Endpoint Determination; Humans; Hypoglycemic Agents; Linagliptin; Meta-Analysis as Topic; Observational Studies as Topic; Piperidines; Randomized Controlled Trials as Topic; Risk Factors; Sitagliptin Phosphate; Uracil

2016
Incorporating incretin-based therapies into clinical practice for patients with type 2 diabetes.
    Advances in therapy, 2014, Volume: 31, Issue:3

    Effective, evidence-based management of type 2 diabetes (T2D) requires the integration of the best available evidence with clinical experience and patient preferences.. Studies published from 2000 to 2012 evaluating glucagon-like peptide-1 receptor agonists (GLP-1RAs) or dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors) were identified using PubMed. The author contextualized the study findings with his clinical experience.. Incretin-based therapy targets multiple dysfunctional organs in T2D. Injectable GLP-1RAs provide substantial glycemic control and weight reduction; while oral DPP-4 inhibitors provide moderate glycemic control and weight neutrality. Both classes are effective, well tolerated, and associated with a low incidence of hypoglycemia when used alone or in combination with other antidiabetes agents. GLP-1RAs are associated with transient nausea and, like DPP-4 inhibitors, rare pancreatitis.. Data indicate and clinical experience confirms that incretins are well tolerated in appropriate patients and provide sustained glycemic control and weight loss or weight neutrality throughout T2D progression.

    Topics: Adamantane; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Linagliptin; Liraglutide; Peptides; Piperidines; Purines; Pyrazines; Quinazolines; Receptors, Glucagon; Sitagliptin Phosphate; Treatment Outcome; Triazoles; Uracil; Venoms; Weight Loss

2014
The pharmacokinetic considerations and adverse effects of DPP-4 inhibitors [corrected].
    Expert opinion on drug metabolism & toxicology, 2014, Volume: 10, Issue:6

    Dipeptidyl-peptidase-4 (DPP-4) inhibitors are a class of anti-hyperglycemic agents with proven efficacy in patients with type 2 diabetes mellitus (T2DM).. This review considers the pharmacokinetic profile, adverse effects and drug interactions of DPP-4 inhibitors. DPP-4 inhibitors have certain differences in their structure, metabolism, route of elimination and selectivity for DPP-4 over structurally related enzymes, such as DPP-8/DPP-9. They have a low potential for drug interactions, with the exception of saxagliptin that is largely metabolized by cytochrome CYP3A4/A5. Reports of pancreatitis and pancreatic cancer have raised concerns regarding the safety of DPP-4 inhibitors and are under investigation. Post-marketing surveillance has revealed less common adverse effects, especially a number of skin- and immune-related adverse effects. These issues are covered in the present review.. DPP-4 inhibitors are useful and efficient drugs. DPP-4 inhibitors have similar mechanism of action and similar efficacy. However, DPP-4 inhibitors have certain differences in their pharmacokinetic properties that may be associated with different clinical effects and adverse event profiles. Although clinical trials indicated a favorable safety profile, post-marketing reports revealed certain safety aspects that need further investigation. Certainly, more research is needed to clarify if the differences among DPP-4 inhibitors could lead to a different clinical and safety profile.

    Topics: Adamantane; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Drug Interactions; Humans; Linagliptin; Nitriles; Piperidines; Piperidones; Purines; Pyrazines; Pyrazoles; Pyrimidines; Pyrrolidines; Quinazolines; Sitagliptin Phosphate; Thiazolidines; Triazoles; Uracil; Vildagliptin

2014
Combination therapy with DPP-4 inhibitors and insulin in patients with type 2 diabetes mellitus: what is the evidence?
    Hospital practice (1995), 2013, Volume: 41, Issue:2

    As type 2 diabetes mellitus (T2DM) progresses, most patients will require insulin replacement therapy. Whether oral antidiabetic drug (OAD) therapy should be retained when initiating insulin is still debated. While the rationale to keep metformin with insulin is strong (mostly as an insulin-sparing agent to limit weight gain), the evidence is less clear for other OADs. In particular, the question now comes up what the expected benefit could be of combining the newer agents, such as the dipeptidyl peptidase-4 (DPP-4) inhibitors with insulin. Additionally, when metformin is no longer a treatment option, as in the case of patients with severe renal impairment, insulin is often used as monotherapy, with little evidence of benefit in maintaining other OADs. In this specific situation, it is also of interest to evaluate the potential benefit of combined treatment with a DPP-4 inhibitor and insulin. Among the classic limitations of insulin therapy in patients with T2DM, hypoglycemia remains a major barrier to glycemic control, along with weight gain exacerbation. The oral DPP-4 inhibitors improve glycemic control by increasing the sensitivity of the islet cells to glucose, and thus are not associated with an increased risk for hypoglycemia and are weight neutral. In addition to the expected benefits associated with limiting insulin dose and regimen complexity, the specific advantages the DPP-4 inhibitor drug class on hypoglycemia and weight gain could justify combining DPP-4 inhibitors with insulin; additionally, a DPP-4 inhibitor may be of special value to decrease glycemic excursions that are not properly addressed by basal insulin therapy and metformin use, even after optimizing titration of the basal insulin. However, given the common original perception that treatment with DPP-4 inhibitors may be less beneficial with increasing disease progression because of the loss of β-cell function, the potential relevance of these agents in the setting of advanced T2DM treated with insulin was not necessarily anticipated. Promising data from studies on the use of these new agents in insulin-treated patients with T2DM have started to emerge. Our article provides a comprehensive overview of the currently available evidence from controlled randomized clinical trials and we discuss the potential role of DPP-4 inhibitors in the this setting. Further clinical experience will allow to fully assess the positioning of these agents in insulin-treated T2DM populations.

    Topics: Adamantane; Body Weight; Diabetes Complications; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Disease Progression; Drug Therapy, Combination; Humans; Hypoglycemia; Hypoglycemic Agents; Insulin; Linagliptin; Nitriles; Piperidines; Purines; Pyrazines; Pyrrolidines; Quinazolines; Renal Insufficiency, Chronic; Sitagliptin Phosphate; Triazoles; Uracil; Vildagliptin

2013
Noninsulin glucose-lowering agents for the treatment of patients on dialysis.
    Nature reviews. Nephrology, 2013, Volume: 9, Issue:3

    Chronic kidney disease (CKD) is a common complication of diabetes mellitus and the most common cause of end-stage renal disease (ESRD). As the worldwide prevalence of diabetes continues to increase, the number of patients with CKD will also increase. Therefore, it is essential that physicians know how to safely and effectively manage diabetes in the setting of CKD. Adequate glycaemic control in patients with diabetes is important to prevent ESRD and other complications and to decrease mortality. However, many glucose-lowering agents need to be dose-adjusted or should not be used in the setting of stage 3 CKD or higher (defined as an estimated glomerular filtration rate [eGFR] <60 ml/min/1.73 m(2)), particularly in patients with stage 5 CKD (eGFR <15 ml/min/1.73 m(2)) and in those receiving dialysis. Insulin therapy is appropriate for patients undergoing dialysis; however, several orally administered glucose-lowering agents can also be used safely in these patients. In this Review, we provide an overview of the use of noninsulin glucose-lowering agents in the dialysis population.

    Topics: Adamantane; Biguanides; Diabetic Nephropathies; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Disease Progression; Glucagon-Like Peptides; Glycoside Hydrolase Inhibitors; Humans; Hypoglycemic Agents; Linagliptin; Meglumine; Metformin; Nitriles; Piperidines; Purines; Pyrazines; Pyrrolidines; Quinazolines; Renal Dialysis; Renal Insufficiency, Chronic; Sitagliptin Phosphate; Sulfonylurea Compounds; Thiazolidinediones; Treatment Outcome; Triazoles; Uracil; Vildagliptin

2013
DPP-4 inhibitors in the management of type 2 diabetes: a critical review of head-to-head trials.
    Diabetes & metabolism, 2012, Volume: 38, Issue:2

    Dipeptidyl peptidase-4 (DPP-4) inhibitors offer new options for the management of type 2 diabetes. Direct comparisons with active glucose-lowering comparators in drug-naive patients have demonstrated that DPP-4 inhibitors exert slightly less pronounced HbA(1c) reduction than metformin (with the advantage of better gastrointestinal tolerability) and similar glucose-lowering effects as with a thiazolidinedione (TZD; with the advantage of no weight gain). In metformin-treated patients, gliptins were associated with similar HbA(1c) reductions compared with a sulphonylurea (SU; with the advantage of no weight gain, considerably fewer hypoglycaemic episodes and no need for titration) and a TZD (with the advantage of no weight gain and better overall tolerability). DPP-4 inhibitors also exert clinically relevant glucose-lowering effects compared with a placebo in patients treated with SU or TZD (of potential interest when metformin is either not tolerated or contraindicated), and as oral triple therapy with a good tolerability profile when added to a metformin-SU or pioglitazone-SU combination. Several clinical trials also showed a consistent reduction in HbA(1c) when DPP-4 inhibitors were added to basal insulin therapy, with no increased risk of hypoglycaemia. Because of the complex pathophysiology of type 2 diabetes and the complementary actions of glucose-lowering agents, initial combination of a DPP-4 inhibitor with either metformin or a glitazone may be applied in drug-naive patients, resulting in greater efficacy and similar safety compared with either drug as monotherapy. However, DPP-4 inhibitors were less effective than GLP-1 receptor agonists for reducing HbA(1c) and body weight, but offer the advantage of being easier to use (oral instead of injected administration) and lower in cost. Only one head-to-head trial demonstrated the non-inferiority of saxagliptin vs sitagliptin. Clearly, more trials of direct comparisons between different incretin-based therapies are needed. Because of their pharmacokinetic characteristics, pharmacodynamic properties (glucose-dependent glucose-lowering effect) and good overall tolerability profile, DPP-4 inhibitors may have a key role to play in patients with renal impairment and in the elderly. The role of DPP-4 inhibitors in the therapeutic armamentarium of type 2 diabetes is rapidly evolving as their potential strengths and weaknesses become better defined mainly through controlled clinical trials.

    Topics: Adamantane; Clinical Trials as Topic; Cost-Benefit Analysis; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Drug Therapy, Combination; Female; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Linagliptin; Male; Metformin; Nitriles; Piperidines; Purines; Pyrazines; Pyrrolidines; Quinazolines; Sitagliptin Phosphate; Triazoles; Uracil; Vildagliptin; Weight Gain

2012
An update in incretin-based therapy: a focus on dipeptidyl peptidase--4 inhibitors.
    Current diabetes reviews, 2012, Volume: 8, Issue:3

    Dipeptidyl peptidase -4 inhibitors represent a novel way to augment the incretin system and one of the newest class of medications in the treatment of type 2 diabetes mellitus. Their mechanism of action is to decrease the inactivation of glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide, both of which are involved in maintaining euglycemia subsequent to carbohydrate intake. Currently investigated agents include sitagliptin, vildagliptin, saxagliptin, linagliptin, and alogliptin. Each agent has been shown to provide significant improvements in glycemic control compared to placebo. They are effective when added to other oral diabetes agents and in the cases of sitagliptin, vildagliptin, and alogliptin in addition to insulin. These agents may not provide as significant improvement in glucose concentrations as some other medications including metformin, thiazolidinediones, or glucagon-like peptide 1 agonists. The lack of head to head clinical data comparing the various dipeptidyl peptidase 4 inhibitors does not allow for specific recommendations if one agent is more effective or safer than another within the class. Their side effect profile suggests they are very well tolerated and have few drug interactions. For patients with mildly elevated glucose concentrations, they are therapeutic options in both drug-naive patients as well as those not optimally controlled on other diabetes medications.

    Topics: Adamantane; Blood Glucose; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Drug Interactions; Female; Glucagon-Like Peptide 1; Humans; Linagliptin; Male; Nitriles; Piperidines; Purines; Pyrazines; Pyrrolidines; Quinazolines; Sitagliptin Phosphate; Treatment Outcome; Triazoles; Uracil; Vildagliptin

2012
Incretin therapies in the management of elderly patients with type 2 diabetes mellitus.
    Hospital practice (1995), 2011, Volume: 39, Issue:1

    Aging is characterized by a progressive increase in the prevalence of type 2 diabetes mellitus (T2DM), which approaches 20% by age 70 years. Older patients with T2DM are a very heterogeneous group with multiple comorbidities, an increased risk of hypoglycemia, and a greater susceptibility to adverse effects of antihyperglycemic drugs, making treatment of T2DM in this population challenging. The risk of severe hypoglycemia likely represents the greatest barrier to T2DM care in the elderly. Although recent guidelines recommend more flexibility in treating this population with individualized targets, inadequate glycemic control is still closely linked to poor outcome in elderly patients. Incretins (glucose-dependent insulinotropic polypeptide [GIP] and glucagon-like peptide-1 [GLP-1]) are hormones released post-meal from intestinal endocrine cells that stimulate insulin secretion and suppress postprandial glucagon secretion in a glucose-dependent manner. "Incretin therapies," comprising the injectable GLP-1 analogs and oral dipeptidyl peptidase-4 (DPP-4) inhibitors, are promising new therapies for use in older patients because of their consistent efficacy and low risk of hypoglycemia. However, data with these new agents are still scarce in this population, which has not been particularly well represented in clinical trials, highlighting the need for additional specific studies. The objective of this article is to provide an overview of the available data and potential role of these novel incretin therapies in managing T2DM in the elderly. With the exception of the DPP-4 inhibitor vildagliptin, there is no published trial to date dedicated to this population, although a few studies are currently ongoing. Therefore, available data from elderly subgroups of individual studies were also reviewed when available, as well as pooled analyses by age subgroups across clinical programs conducted with incretin therapies.

    Topics: Adamantane; Age Factors; Aged; Aging; Clinical Trials as Topic; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Exenatide; Female; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Incretins; Linagliptin; Liraglutide; Male; Middle Aged; Nitriles; Peptides; Piperidines; Purines; Pyrazines; Pyrrolidines; Quinazolines; Sitagliptin Phosphate; Treatment Outcome; Triazoles; Uracil; Venoms; Vildagliptin

2011
Small molecule dipeptidylpeptidase IV inhibitors under investigation for diabetes mellitus therapy.
    Expert opinion on investigational drugs, 2011, Volume: 20, Issue:6

    A recent treatment advance for type 2 diabetes is the oral therapy with DPP IV inhibitors. New substances of this class are in development in order to increase alternatives for treating this important metabolic disease. The reader will gain detailed pharmacological and clinical information on alogliptin, dutogliptin and linagliptin and will learn how these DPP IV inhibitors may widen the whole drug class. Possible special indications for the various DPP IV inhibitors are discussed.. The DPP IV inhibitors and their current role in type 2 diabetes are highlighted. Preclinical and clinical studies of the novel DPP IV inhibitors alogliptin, dutogliptin and linagliptin, including published data since 2007, are presented and a comparison of these compounds is made.. The efficacy and safety profile of DPP IV inhibitors are promising and advantageous so far. In contrast to sulfonylureas, DPP IV inhibitors do not have an intrinsic risk for causing hypoglycemia and they are body weight neutral. Their tolerability profile is good and no specific adverse reactions have been reported. Experience so far suggests that there are no safety issues associated with inhibition of DPP IV activity by itself. Novel DPP IV inhibitors with distinct properties may offer alternative choices within this drug class.

    Topics: Administration, Oral; Animals; Boronic Acids; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Drug Design; Humans; Hypoglycemic Agents; Linagliptin; Piperidines; Purines; Quinazolines; Uracil

2011
Dipeptidylpeptidase-4 inhibitors (gliptins): focus on drug-drug interactions.
    Clinical pharmacokinetics, 2010, Volume: 49, Issue:9

    Patients with type 2 diabetes mellitus (T2DM) are generally treated with many pharmacological compounds and are exposed to a high risk of drug-drug interactions. Indeed, blood glucose control usually requires a combination of various glucose-lowering agents, and the recommended global approach to reduce overall cardiovascular risk generally implies administration of several protective compounds, including HMG-CoA reductase inhibitors (statins), antihypertensive compounds and antiplatelet agents. New compounds have been developed to improve glucose-induced beta-cell secretion and glucose control, without inducing hypoglycaemia or weight gain, in patients with T2DM. Dipeptidylpeptidase-4 (DPP-4) inhibitors are novel oral glucose-lowering agents, which may be used as monotherapy or in combination with other antidiabetic compounds, metformin, thiazolidinediones or even sulfonylureas. Sitagliptin, vildagliptin and saxagliptin are already on the market, either as single agents or in fixed-dose combined formulations with metformin. Other compounds, such as alogliptin and linagliptin, are in a late phase of development. This review summarizes the available data on drug-drug interactions reported in the literature for these five DDP-4 inhibitors: sitagliptin, vildagliptin, saxagliptin, alogliptin and linagliptin. Possible pharmacokinetic interferences have been investigated between each of these compounds and various pharmacological agents, which were selected because there are other glucose-lowering agents (metformin, glibenclamide [glyburide], pioglitazone/rosiglitazone) that may be prescribed in combination with DPP-4 inhibitors, other drugs that are currently used in patients with T2DM (statins, antihypertensive agents), compounds that are known to interfere with the cytochrome P450 (CYP) system (ketoconazole, diltiazem, rifampicin [rifampin]) or with P-glycoprotein transport (ciclosporin), or agents with a narrow therapeutic safety window (warfarin, digoxin). Generally speaking, almost no drug-drug interactions or only minor drug-drug interactions have been reported between DPP-4 inhibitors and any of these drugs. The gliptins do not significantly modify the pharmacokinetic profile and exposure of the other tested drugs, and the other drugs do not significantly alter the pharmacokinetic profile of the gliptins or exposure to these. The only exception concerns saxagliptin, which is metabolized to an active metabolite by CYP3A4/5. Therefore, exposure to saxagli

    Topics: Adamantane; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Drug Interactions; Humans; Linagliptin; Nitriles; Piperidines; Purines; Pyrazines; Pyrrolidines; Quinazolines; Sitagliptin Phosphate; Triazoles; Uracil; Vildagliptin

2010
DPP-4 inhibitors: what may be the clinical differentiators?
    Diabetes research and clinical practice, 2010, Volume: 90, Issue:2

    Attenuation of the prandial incretin effect, mediated by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), contributes to hyperglycemia in type 2 diabetes mellitus (T2DM). Since the launch of sitagliptin in 2006, a compelling body of evidence has accumulated showing that dipeptidyl peptidase-4 (DPP-4) inhibitors, which augment endogenous GLP-1 and GIP levels, represent an important advance in the management of T2DM. Currently, three DPP-4 inhibitors - sitagliptin, vildagliptin and saxagliptin - have been approved in various countries worldwide. Several other DPP-4 inhibitors, including linagliptin and alogliptin, are currently in clinical development. As understanding of, and experience with, the growing number of DPP-4 inhibitors broadens, increasing evidence suggests that the class may offer advantages over other antidiabetic drugs in particular patient populations. The expanding evidence base also suggests that certain differences between DPP-4 inhibitors may prove to be clinically significant. This therapeutic diversity should help clinicians tailor treatment to the individual patient, thereby increasing the proportion that safely attain target HbA(1c) levels, and reducing morbidity and mortality. This review offers an overview of DPP-4 inhibitors in T2DM and suggests some characteristics that may provide clinically relevant differentiators within this class.

    Topics: Adamantane; Blood Glucose; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Energy Intake; Gastric Emptying; Glucagon-Like Peptide 1; Glycated Hemoglobin; Humans; Hyperglycemia; Hypoglycemic Agents; Incretins; Intestinal Mucosa; Linagliptin; Neurons; Nitriles; Piperidines; Purines; Pyrazines; Pyrrolidines; Quinazolines; Sitagliptin Phosphate; Triazoles; Uracil; Vildagliptin

2010

Other Studies

13 other study(ies) available for linagliptin and alogliptin

ArticleYear
Cost-Effectiveness of Dipeptidylpeptidase-4 Inhibitors Added to Metformin in Patients With Type 2 Diabetes in China.
    Frontiers in endocrinology, 2021, Volume: 12

    Dipeptidylpeptidase-4 (DPP-4) inhibitors, including linagliptin, alogliptin, saxagliptin, sitagliptin, and vildagliptin, are used for the treatment of type 2 diabetes mellitus (T2DM) patients in China. This study assessed the economic outcomes of different DPP-4 inhibitors in patients with T2DM inadequately controlled with metformin in the Chinese context.. In this study, the validated Chinese Outcomes Model for T2DM (COMT) was conducted to project economic outcomes from the perspective of Chinese healthcare service providers. Efficacy and safety, medical expenditure, and utility data were derived from the literature, which were assigned to model variables. The primary outputs of the model included the lifetime costs, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratio (ICER). One-way and probability sensitivity analysis was conducted to assess the potential uncertainties of parameters.. Of the five competing strategies, alogliptin 25 mg strategy yielded the most significant health outcome, which associated with improvements in discounted QALY of 0.007, 0.014, 0.011, and 0.022. These results suggested that alogliptin was a preferred treatment option compared with other DPP-4 inhibitors for Chinese patients whose T2DM are inadequately controlled on metformin monotherapy.

    Topics: Adamantane; China; Cost-Benefit Analysis; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Drug Resistance; Drug Therapy, Combination; Humans; Linagliptin; Metformin; Middle Aged; Piperidines; Randomized Controlled Trials as Topic; Sitagliptin Phosphate; Uracil; Vildagliptin

2021
Action of Dipeptidyl Peptidase-4 Inhibitors on SARS-CoV-2 Main Protease.
    ChemMedChem, 2021, 05-06, Volume: 16, Issue:9

    In a recent publication, Eleftheriou et al. proposed that inhibitors of dipeptidyl peptidase-4 (DPP-4) are functional inhibitors of the main protease (M

    Topics: Adamantane; Antiviral Agents; Coronavirus 3C Proteases; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Drug Repositioning; Enzyme Assays; Heterocyclic Compounds; Linagliptin; Piperidines; SARS-CoV-2; Sitagliptin Phosphate; Uracil

2021
Increased risk of bullous pemphigoid in dipeptidyl peptidase 4 inhibitors: A nationwide, population-based, cohort study in Taiwan.
    The Journal of dermatology, 2020, Volume: 47, Issue:3

    Recent studies revealed the risk of bullous pemphigoid (BP) in patients with diabetes mellitus (DM) taking dipeptidyl peptidase 4 (DPP-4) inhibitors. To clarify the relationship between taking DPP-4 inhibitors and the risk of BP among patients with DM, we conducted a cohort study by using the National Health Insurance Research Database of Taiwan from 1 January 2009 to 31 December 2015. We identified 6340 patients with DM taking DPP-4 inhibitors and 25 360 DM patients who had not taken DPP-4 inhibitors during the 7-year follow-up period. Compared with the non-DPP-4 inhibitor group, patients taking DDP-4 inhibitors had a higher risk of BP (adjusted hazard ratio [aHR], 2.382; 95% confidence interval (CI), 1.163-4.883; P = 0.017]. Among the DPP-4 inhibitors available in Taiwan, vildagliptin showed the highest risk of BP (aHR, 2.849; 95% CI, 1.893-4.215; P < 0.001), followed by saxagliptin (aHR, 2.657; 95% CI, 1.770-3.934; P < 0.001). Subgroup analysis revealed that the higher risk of BP was observed in patients older than 65 years (aHR, 2.403; 95% CI, 1.590-3.627; P < 0.001). This study revealed that treatment with DPP-4 inhibitors, especially vildagliptin, was significantly associated with an increased risk of BP among DM patients.

    Topics: Adamantane; Adult; Age Factors; Aged; Case-Control Studies; Databases, Factual; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Female; Humans; Incidence; Linagliptin; Male; Middle Aged; Pemphigoid, Bullous; Piperidines; Risk Factors; Sitagliptin Phosphate; Taiwan; Uracil; Vildagliptin; Young Adult

2020
Comparative effect of dipeptidyl-peptidase 4 inhibitors on laboratory parameters in patients with diabetes mellitus.
    BMC pharmacology & toxicology, 2020, 04-21, Volume: 21, Issue:1

    The purpose of this study was to evaluate and compare the effects on laboratory parameters among monotherapy with five DPP-4 inhibitors in patients with type 2 diabetes mellitus (DM).. We identified cohorts of new sitagliptin users (n = 879), vildagliptin users (n = 253), teneligliptin users (n = 260), alogliptin users (n = 237), and linagliptin users (n = 180) in patients with type 2 DM. We used a multivariate regression model to evaluate and compare the effects of the drugs on laboratory parameters including HbA1c concentration and serum concentrations of creatinine, estimated glomerular filtration rate, high density lipoprotein, total cholesterol, triglyceride, aspartate aminotransferase, and alanine aminotransferase among the five DPP-4 inhibitors up to 12 months.. Our study showed a favorable effect on HbA1c concentration and a slightly unfavorable effect on serum creatinine concentration in users of the five DPP-4 inhibitors, a favorable effect on lipid metabolism in sitagliptin, vildagliptin, and alogliptin users, and a favorable effect on hepatic parameters in sitagliptin, alogliptin, and linagliptin users, in comparison of the baseline and exposure periods. However, there was no significant difference in mean change in the concentration of any laboratory parameter among the five groups of DPP-4 inhibitor users.. In this study, we showed the effect of five DPP-4 inhibitors on glycemic, renal, and lipid metabolism, and hepatic parameters. DPP-4 inhibitors are well-tolerated hypoglycemic drugs.

    Topics: Aged; Alanine Transaminase; Aspartate Aminotransferases; Cholesterol; Creatinine; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Female; Glomerular Filtration Rate; Glycated Hemoglobin; Humans; Linagliptin; Lipid Metabolism; Lipoproteins, HDL; Male; Middle Aged; Piperidines; Pyrazoles; Sitagliptin Phosphate; Thiazolidines; Triglycerides; Uracil; Vildagliptin

2020
Detection and characterization of IgG, IgE, and IgA autoantibodies in patients with bullous pemphigoid associated with dipeptidyl peptidase-4 inhibitors.
    Journal of the American Academy of Dermatology, 2018, Volume: 78, Issue:3

    Topics: Adamantane; Aged; Aged, 80 and over; Autoantibodies; Autoantigens; Collagen Type XVII; Dipeptidyl-Peptidase IV Inhibitors; Epitopes; Female; Humans; Immunoglobulin A; Immunoglobulin E; Immunoglobulin G; Linagliptin; Male; Membrane Glycoproteins; Middle Aged; Nitriles; Non-Fibrillar Collagens; Pemphigoid, Bullous; Piperidines; Pyrrolidines; Sitagliptin Phosphate; Uracil; Vildagliptin

2018
Cardiovascular safety signals with dipeptidyl peptidase-4 inhibitors: A disproportionality analysis among high-risk patients.
    Pharmacoepidemiology and drug safety, 2018, Volume: 27, Issue:6

    In 2008, the US Food and Drug Administration (FDA) issued Draft Guidance on investigating cardiovascular risk with oral diabetic drugs, including dipeptidyl peptidase-4 inhibitors (DPP-4i). In 2014, underpowered, post hoc analyses of clinical trials suggested an increased risk of heart failure with the use of these products. As such, we assessed disproportionate reporting of major adverse cardiac events (MACE) among reports for DPP-4i submitted to the FDA Adverse Event Reporting System (FAERS) from 2006 to 2015.. We assessed the empirical Bayes geometric mean (EBGM) and its lower bound (EB05) of the relative reporting ratio for MACE among DPP-4i reports in the full FAERS database and in a subset of reports limited to cardiovascular and diabetic drugs. We then compared the EB05 in these 2 analyses and calculated the percent positive agreement for signals of disproportional reporting (SDRs) involving MACE.. Of 180.3 million adverse event reports, 13.4 million were for diabetic and cardiovascular drugs. In the cardiovascular subset, there was an SDR for heart failure with linagliptin (EB05 = 2782.47) and saxagliptin (EB05 = 2.40), myocardial infarction with alogliptin (EB05 = 290.11), and cerebral infarction with sitagliptin (EB05 = 2.80). Of the 14 MACE, 8 had a percent positive agreement ≥50% for an SDR in both analyses. Overall, the cardiovascular subset elicited 11 more SDRs for DPP-4i than the full dataset.. Postmarketing surveillance of DPP-4i through FAERS suggest increased reporting of MACE, supporting the current FDA warning of heart failure risk. This suggests the need for additional longitudinal, observational research into the association of DPP-4i and other MACE.

    Topics: Adamantane; Administration, Oral; Adverse Drug Reaction Reporting Systems; Aged; Bayes Theorem; Databases, Factual; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Female; Heart Failure; Humans; Linagliptin; Male; Middle Aged; Piperidines; Practice Guidelines as Topic; Sitagliptin Phosphate; United States; United States Food and Drug Administration; Uracil

2018
Demographic and Clinical Characteristics of Patients With Type 2 Diabetes Mellitus Initiating Dipeptidyl Peptidase 4 Inhibitors: A Retrospective Study of UK General Practice.
    Clinical therapeutics, 2016, Volume: 38, Issue:8

    The majority of people with type 2 diabetes mellitus (T2DM) will develop chronic kidney disease in their lifetime. Because most dipeptidyl peptidase (DPP)-4 inhibitors require dose adjustment in patients with T2DM and renal impairment, we aimed to understand how these treatments are prescribed in UK clinical practice, and to determine whether recommended dose adjustments are being made at initial prescription.. This retrospective, descriptive cohort study analyzed data from the Clinical Practice Research Datalink (CPRD). Patients of interest were those with T2DM and renal impairment initiated on a DPP-4 inhibitor between 2014 and 2015. Patients under 40 years of age and with type 1 diabetes were excluded. Descriptive statistics were calculated for baseline demographic and clinical characteristics, and the study protocol was approved by the Independent Scientific Advisory Committee for Medicines and Healthcare products Regulatory Agency database research.. A total of 3425 patients diagnosed with T2DM and renal impairment and initiated on a DPP-4 inhibitor were identified. The percentages of patients prescribed the high dose of saxagliptin, alogliptin,sitagliptin, and vildagliptin were 48%, 43%, 41%, and 27%, respectively, which is not recommended given their renal dysfunction. These are conservative estimates, as they do not include patients with severe renal impairment on sitagliptin and alogliptin, whose doses should be further reduced. No patients were prescribed an inappropriately high dose of linagliptin, as there is no requirement for dose adjustment in patients with renal impairment.. In this study, a considerable number of patients with T2DM and renal impairment were prescribed an inappropriately high dose of saxagliptin, alogliptin, sitagliptin, or vildagliptin for their level of renal impairment at treatment initiation. This prescribing could have been due to the complexity of different dosing requirements, or a lack of awareness of the need for dose adjustment of most DPP-4 inhibitors in patients with renal impairment. Linagliptin may be used in patients with moderate or severe renal impairment without dose adjustment.

    Topics: Adamantane; Aged; Aged, 80 and over; Diabetes Mellitus, Type 2; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Female; General Practice; Humans; Hypoglycemic Agents; Linagliptin; Male; Middle Aged; Nitriles; Piperidines; Pyrrolidines; Retrospective Studies; Sitagliptin Phosphate; Uracil; Vildagliptin

2016
Comparative Binding Analysis of Dipeptidyl Peptidase IV (DPP-4) with Antidiabetic Drugs - An Ab Initio Fragment Molecular Orbital Study.
    PloS one, 2016, Volume: 11, Issue:11

    Dipeptidyl peptidase IV (DPP-4) enzyme is responsible for the degradation of incretins that stimulates insulin secretion and hence inhibition of DPP-4 becomes an established approach for the treatment of type 2 diabetics. We studied the interaction between DPP-4 and its inhibitor drugs (sitagliptin 1, linagliptin 2, alogliptin 3, and teneligliptin 4) quantitatively by using fragment molecular orbital calculations at the RI-MP2/cc-pVDZ level to analyze the inhibitory activities of the drugs. Apart from having common interactions with key residues, inhibitors encompassing the DPP-4 active site extensively interact widely with the hydrophobic pocket by their hydrophobic inhibitor moieties. The cumulative hydrophobic interaction becomes stronger for these inhibitors and hence linagliptin and teneligliptin have larger interaction energies, and consequently higher inhibitory activities, than their alogliptin and sitagliptin counterparts. Though effective interaction for both 2 and 3 is at [Formula: see text] subsite, 2 has a stronger binding to this subsite interacting with Trp629 and Tyr547 than 3 does. The presence of triazolopiperazine and piperazine moiety in 1 and 4, respectively, provides the interaction to the S2 extensive subsite; however, the latter's superior inhibitory activity is not only due to a relatively tighter binding to the S2 extensive subsite, but also due to the interactions to the S1 subsite. The calculated hydrophobic interfragment interaction energies correlate well with the experimental binding affinities (KD) and inhibitory activities (IC50) of the DPP-4 inhibitors.

    Topics: Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Humans; Hydrophobic and Hydrophilic Interactions; Hypoglycemic Agents; Linagliptin; Molecular Docking Simulation; Piperidines; Pyrazoles; Sitagliptin Phosphate; Thiazolidines; Uracil

2016
[A novel dipeptidyl peptidase IV inhibitors developed through scaffold hopping and drug splicing strategy].
    Yao xue xue bao = Acta pharmaceutica Sinica, 2014, Volume: 49, Issue:1

    Though all the marketed drugs of dipeptidyl peptidase IV inhibitors are structurally different, their inherent correlation is worthy of further investigation. Herein we rapidly discovered a novel DPP-IV inhibitor 8g (IC50 = 4.9 nmol.L-1) which exhibits as good activity and selectivity as the market drugs through scaffold hopping and drug splicing strategies based on alogliptin and linagliptin. This study demonstrated that the employment of classic medicinal chemistry strategy to the marketed drugs with specific target is an efficient approach to discover novel bioactive molecules.

    Topics: Dipeptidyl-Peptidase IV Inhibitors; Drug Design; Drug Discovery; Humans; Hypoglycemic Agents; Linagliptin; Molecular Structure; Piperidines; Structure-Activity Relationship; Uracil

2014
Discovery of highly potent DPP-4 inhibitors by hybrid compound design based on linagliptin and alogliptin.
    European journal of medicinal chemistry, 2014, Aug-18, Volume: 83

    Highly potent DPP-4 inhibitors have been identified by hybrid compound design based on linagliptin and alogliptin. The most promising compound 2h (IC50 = 0.31 nM) exhibited 8.5-fold and 2.5-fold more potent activity than that of alogliptin (IC50 = 2.63 nM) and linagliptin (IC50 = 0.77 nM), respectively. Compound 2h had a good inhibition selectivity for DPP-4 over DPP-8/9 and thus was selected for further biological evaluation, including oral glucose tolerance, plasma DPP-4 inhibitory activity, pharmacokinetic profile, acute toxicity and hERG inhibition. The assay results showed that 2h displayed significant in vivo glucose-lowering effect and low risk of toxicity. Further studies are expected to confirm 2h as a potential drug candidate for the treatment of type 2 diabetes.

    Topics: Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Drug Design; Humans; Linagliptin; Models, Molecular; Piperidines; Protein Conformation; Purines; Quinazolines; Structure-Activity Relationship; Substrate Specificity; Uracil

2014
Highly potent dipeptidyl peptidase IV inhibitors derived from Alogliptin through pharmacophore hybridization and lead optimization.
    European journal of medicinal chemistry, 2013, Volume: 68

    The superposition of the DPP-IV complex revealed that the butynyl group of Linagliptin can be freely switched with the cyanobenzyl group of Alogliptin. Thus, a pharmacophore hybridization of Alogliptin was initiated and led to a novel DPP-IV inhibitor, 11a. Although it did not exhibit the desired activity (IC50=0.2 μM), compound 11a acts as a lead compound, which triggered a resulting structural optimization and the formation of compound 11m. A novel series of potent DPP-IV inhibitors represented by compound 11m (IC50=0.4 nM) was ultimately obtained with a robust pharmacokinetic profile and superior in vitro and in vivo efficacy compared to Alogliptin.

    Topics: Animals; Crystallography, X-Ray; Dipeptidyl-Peptidase IV Inhibitors; Enzyme Activation; Inhibitory Concentration 50; Linagliptin; Male; Models, Molecular; Molecular Docking Simulation; Molecular Structure; Piperidines; Purines; Quinazolines; Rats; Rats, Sprague-Dawley; Uracil

2013
[Therapeutic use and adverse events of incretin-related drugs].
    Nihon rinsho. Japanese journal of clinical medicine, 2012, Volume: 70 Suppl 3

    Topics: Adamantane; Aged; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Exenatide; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Incretins; Linagliptin; Liraglutide; Nitriles; Peptides; Piperidines; Purines; Pyrazines; Pyrrolidines; Quinazolines; Sitagliptin Phosphate; Triazoles; Uracil; Venoms; Vildagliptin

2012
Effects of DPP-4 inhibitors on the heart in a rat model of uremic cardiomyopathy.
    PloS one, 2011, Volume: 6, Issue:11

    Uremic cardiomyopathy contributes substantially to mortality in chronic kidney disease (CKD) patients. Glucagon-like peptide-1 (GLP-1) may improve cardiac function, but is mainly degraded by dipeptidyl peptidase-4 (DPP-4).. In a rat model of chronic renal failure, 5/6-nephrectomized [5/6N] rats were treated orally with DPP-4 inhibitors (linagliptin, sitagliptin, alogliptin) or placebo once daily for 4 days from 8 weeks after surgery, to identify the most appropriate treatment for cardiac dysfunction associated with CKD. Linagliptin showed no significant change in blood level AUC(0-∞) in 5/6N rats, but sitagliptin and alogliptin had significantly higher AUC(0-∞) values; 41% and 28% (p = 0.0001 and p = 0.0324), respectively. No correlation of markers of renal tubular and glomerular function with AUC was observed for linagliptin, which required no dose adjustment in uremic rats. Linagliptin 7 µmol/kg caused a 2-fold increase in GLP-1 (AUC 201.0 ng/l*h) in 5/6N rats compared with sham-treated rats (AUC 108.6 ng/l*h) (p = 0.01). The mRNA levels of heart tissue fibrosis markers were all significantly increased in 5/6N vs control rats and reduced/normalized by linagliptin.. DPP-4 inhibition increases plasma GLP-1 levels, particularly in uremia, and reduces expression of cardiac mRNA levels of matrix proteins and B-type natriuretic peptides (BNP). Linagliptin may offer a unique approach for treating uremic cardiomyopathy in CKD patients, with no need for dose-adjustment.

    Topics: Animals; Area Under Curve; Cardiomyopathies; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Gene Expression Regulation; Glomerular Filtration Rate; Glucagon-Like Peptide 1; Heart; Humans; Kidney Failure, Chronic; Linagliptin; Myocardium; Natriuretic Peptide, Brain; Nephrectomy; Piperidines; Purines; Pyrazines; Quinazolines; Rats; Reverse Transcriptase Polymerase Chain Reaction; Sitagliptin Phosphate; Triazoles; Uracil; Uremia

2011