lignans has been researched along with sinapinic-acid* in 5 studies
5 other study(ies) available for lignans and sinapinic-acid
Article | Year |
---|---|
Serumal Lipidomics Reveals the Anti-inflammatory Effect of Flax Lignans and Sinapic Acid in High-Fat-Diet-Fed Mice.
Flax lignans (SDG) and sinapic acid (SA) both have the function of antioxidation and anti-inflammation. However, previous studies have focused mainly on biochemical measurements, gene expression analysis, and clinical assessments. There are limited studies that systematically reveal the underlying mechanism of the anti-inflammation effect of SDG or SA from the lipidomic point of view. Herein, the integrated lipidomic profiling platform was used for the analysis of free fatty acids (FFAs), phospholipids (PLs), triacylglycerols (TAGs), and oxylipins in high-fat (HF)-diet-fed mice after SDG or SA administration. Dietary supplementation of SDG or SA downregulated the levels of total TAGs and FFAs in the ApoE Topics: Animals; Anti-Inflammatory Agents; Butylene Glycols; Coumaric Acids; Diet, High-Fat; Flax; Glucosides; Lignans; Lipidomics; Mice | 2021 |
Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum.
Verticillium longisporum is a soil-borne vascular pathogen causing economic loss in rape. Using the model plant Arabidopsis this study analyzed metabolic changes upon fungal infection in order to identify possible defense strategies of Brassicaceae against this fungus. Metabolite fingerprinting identified infection-induced metabolites derived from the phenylpropanoid pathway. Targeted analysis confirmed the accumulation of sinapoyl glucosides, coniferin, syringin and lignans in leaves from early stages of infection on. At later stages, the amounts of amino acids increased. To test the contribution of the phenylpropanoid pathway, mutants in the pathway were analyzed. The sinapate-deficient mutant fah1-2 showed stronger infection symptoms than wild-type plants, which is most likely due to the lack of sinapoyl esters. Moreover, the coniferin accumulating transgenic plant UGT72E2-OE was less susceptible. Consistently, sinapoyl glucose, coniferyl alcohol and coniferin inhibited fungal growth and melanization in vitro, whereas sinapyl alcohol and syringin did not. The amount of lignin was not significantly altered supporting the notion that soluble derivatives of the phenylpropanoid pathway contribute to defense. These data show that soluble phenylpropanoids are important for the defense response of Arabidopsis against V. longisporum and that metabolite fingerprinting is a valuable tool to identify infection-relevant metabolic markers. Topics: Arabidopsis; Biomarkers; Biosynthetic Pathways; Cinnamates; Coumaric Acids; Disease Resistance; Gene Expression Regulation, Plant; Genes, Plant; Glucosides; Lignans; Lignin; Metabolomics; Mutation; Phenols; Plant Diseases; Plant Leaves; Plant Vascular Bundle; Propanols; Solubility; Verticillium | 2014 |
[Anti-inflammatory mechanism of qingfei xiaoyan wan studied with network pharmacology].
This study aims to clarify out the anti-inflammatory mechanism of Qingfei Xiaoyan Wan. Chemical constituents of Qingfei Xiaoyan Wan identified by UPLC Q-TOF, were submit to Molinspiration, PharmMapper and KEGG bioinformatics softwares for predicting their absorption parameters, target proteins and related pathways respectively; and the gene chip and real time-PCR were carried out to investigate the expression of inflammatory genes on lung tissue of guinea pigs or human bronchial epithelial cell lines. The predicted results showed that 19 of the 24 absorbable constituents affected at 9 inflammation-related pathways through 11 protein targets; Qingfei Xiaoyan Wan treatment can significantly reduce the infiltration of cytokines through ERK1 gene and 5 inflammatory pathways (Focal adhesion, Fc epsilon RI, Toll-like receptors, NK cell-mediated cytotoxic, and ERK/MAPK). The results of real time-PCR further confirmed that the anti-inflammatory effects of Qingfei Xiaoyan Wan were due to active ingredients such as arctigenin, cholic acid and sinapic acid intervened focal adhesion, Fc epsilon RI signaling and ERK/MAPK pathways. The novel approach of 'drug-target-pathway' will present an effective strategy for the study of traditional Chinese medicines. Topics: Animals; Anti-Inflammatory Agents; Asthma; Cell Line; Cholic Acid; Coumaric Acids; Cytokines; Drug Combinations; Drugs, Chinese Herbal; Epithelial Cells; Female; Furans; Guinea Pigs; Humans; Inflammation; Lignans; Lung; Male; MAP Kinase Signaling System; Random Allocation; Receptors, IgE; Toll-Like Receptors | 2013 |
Biosynthesis of podophyllotoxin in Linum album cell cultures.
Cell cultures of Linum album Kotschy ex Boiss. (Linaceae) showing high accumulation of the lignan podophyllotoxin (PTOX) were established. Enzymological studies revealed highest activities of phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, 4-hydroxycinnamate:CoA ligase and cinnamoyl-CoA:NADP oxidoreductase immediately prior to PTOX accumulation. To investigate PTOX biosynthesis, feeding experiments were performed with [2-(13)C]3',4'-dimethoxycinnamic acid, [2-(13)C]3',4'-methylenedioxycinnamic acid (MDCA), [2-(13)C]3',4',5'-trimethoxycinnamic acid, [2-(13)C]sinapic acid, [2-(13)C]- and [2,3-(13)C(2)]ferulic acid. Analysis of the metabolites by HPLC coupled to tandem mass spectrometry revealed incorporation of label from ferulic acid into PTOX and deoxypodophyllotoxin (DOP). In addition, MDCA was also unambiguously incorporated intact into PTOX. These observations suggest that in L. album both ferulic acid and methylenedioxy-substituted cinnamic acid can be incorporated into lignans. Furthermore, it appears that, in this species, the hydroxylation of DOP is a rate-limiting point in the pathway leading to PTOX. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/wo.1007/s00425-002-0834-1. Topics: Alcohol Oxidoreductases; Aldehyde Oxidoreductases; Carbon Isotopes; Cell Division; Cells, Cultured; Chromatography, High Pressure Liquid; Cinnamates; Coenzyme A Ligases; Coumaric Acids; Drugs, Chinese Herbal; Flax; Hydrogen-Ion Concentration; Lignans; Mass Spectrometry; Molecular Structure; Phenylalanine Ammonia-Lyase; Podophyllotoxin | 2002 |
Formation of thomasidioic acid from dehydrosinapinic acid dilactone under neutral conditions, and a remaining inhibitory activity against peroxynitrite-mediated protein nitration.
Dehydrosinapinic acid dilactone (1) was converted to thomasidioic acid (3) and (E,E)-2,3-bis(3,5-dimethoxy-4-hydroxybenzylidene)succinic acid (4) via an alpha,beta-unsaturated gamma-lactone type dimer (2) in phosphate buffer (pH 7.4). A study of the reaction mechanism was accomplished by observing the reaction of methyl ester of 2. The lignans (3, 4) were also prevented the peroxynitrite-mediated protein nitration. Topics: Benzoates; Biphenyl Compounds; Coumaric Acids; Dimerization; Hydrogen-Ion Concentration; Lactones; Lignans; Oxidants; Peroxynitrous Acid; Proteins | 2002 |