lignans and phenoxy-radical

lignans has been researched along with phenoxy-radical* in 3 studies

Reviews

1 review(s) available for lignans and phenoxy-radical

ArticleYear
Dirigent phenoxy radical coupling: advances and challenges.
    Current opinion in biotechnology, 2005, Volume: 16, Issue:4

    The past seven years have witnessed significant progress in the biochemical characterization of dirigent (monolignol radical binding) proteins in vitro, as well as in the delineation of their associated metabolic networks in planta. Interestingly, both the stereoselective and regiospecific control over phenoxy radical-radical coupling appears to have evolved during the transition of plants to a land base for lignan, norlignan and ellagitannin biosynthesis.

    Topics: Free Radicals; Lignans; Lignin; Phenols; Plants

2005

Other Studies

2 other study(ies) available for lignans and phenoxy-radical

ArticleYear
Antiradical and antioxidant activities of new bio-antioxidants.
    Biochimie, 2012, Volume: 94, Issue:2

    Antioxidants could be promising agents for management of oxidative stress-related diseases. New biologically active compounds, belonging to a rare class of natural lignans with antiangiogenic, antitumoral and DNA intercalating properties, have been recently synthesized. These compounds are benzo[kl]xanthene lignans (1,2) and dihydrobenzofuran neolignans (3,4). The radical scavenging and chain-breaking antioxidant activities of compounds 1-4 were studied by applying different methods: radical scavenging activity by DPPH rapid test, chain-breaking antioxidant activity and quantum chemical calculations. All studied compounds were found to be active as DPPH scavengers but reaction time with DPPH and compounds' concentrations influenced deeply the evaluation. The highest values of radical scavenging activity (%RSAmax) and largest rate constants for reaction with DPPH were obtained for compounds 2 and 3. Comparison of %RSAmax with that of standard antioxidants DL-α-tocopherol (TOH), caffeic acid (CA) and butylated hydroxyl toluene (BHT) give the following new order of %RSA max: TOH (61.1%) > CA (58.6%) > 3 (36.3%) > 2 (28.1%) > 4 (6.7%) > 1 (3.6%) = BHT (3.6%). Chain-breaking antioxidant activities of individual compounds (0.1-1.0 mM) and of their equimolar binary mixtures (0.1 mM) with TOH were determined from the kinetic curves of lipid autoxidation at 80 °C. On the basis of a comparable kinetic analysis with standard antioxidants a new order of the antioxidant efficiency (i.e., protection factor, PF) of compounds 1-4 were obtained: 2 (7.2) ≥ TOH (7.0) ≥ CA (6.7) > 1 (3.1) > 3 (2.2) > ferulic acid FA (1.5) > 4 (0.6); and of the antioxidant reactivity (i.e. inhibition degree, ID): 2 (44.0) >> TOH (18.7) >> CA (9.3) >> 1 (8.4) > 3 (2.8) > FA (1.0) > 4 (0.9). The important role of the catecholic structure in these compounds, which is responsible for the high chain-breaking antioxidant activity, is discussed and a reaction mechanism is proposed. Higher oxidation stability of the lipid substrate was found in the presence of equimolar binary mixtures 2 + TOH, 3 + TOH and 4 + TOH. However, an actual synergism was only obtained for the binary mixtures with compounds 3 and 4. The geometries of compounds and all possible phenoxyl radicals were optimized using density functional theory. For description of the scavenging activity bond dissociation enthalpies (BDE), HOMO energies and spin densities were employed. The best correlation between theoretical and experimental d

    Topics: alpha-Tocopherol; Antioxidants; Benzofurans; Biphenyl Compounds; Butylated Hydroxytoluene; Caffeic Acids; Free Radical Scavengers; Hot Temperature; Kinetics; Lignans; Lipids; Oxidation-Reduction; Phenols; Picrates; Quantum Theory; Solutions; Structure-Activity Relationship; Thermodynamics; Xanthenes

2012
The western red cedar (Thuja plicata) 8-8' DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity.
    Plant molecular biology, 2002, Volume: 49, Issue:2

    The isolation and characterization of a multigene family of the first class of dirigent proteins (namely that mainly involved in 8-8' coupling leading to (+)-pinoresinol in this case) is reported, this comprising of nine western red cedar (Thuja plicata) DIRIGENT genes (DIR1-9) of 72-99.5% identity to each other. Their corresponding cDNA clones had coding regions for 180-183 amino acids with each having a predicted molecular mass of ca. 20 kDa including the signal peptide. Real time-PCR established that the DIRIGENT isovariants were differentially expressed during growth and development of T. plicata (P < 0.05). The phylogenetic relationships and the rates and patterns of nucleotide substitution suggest that the DIRIGENT gene may have evolved via paralogous expansion at an early stage of vascular plant diversification. Thereafter, western red cedar paralogues have maintained an high homogeneity presumably via a concerted evolutionary mode. This, in turn, is assumed to be the driving force for the differential formation of 8-8'-linked pinoresinol derived (poly)lignans in the needles, stems, bark and branches, as well as for massive accumulation of 8-8'-linked plicatic acid-derived (poly)lignans in heartwood.

    Topics: Amino Acid Sequence; Gene Expression Regulation, Plant; Lignans; Lignin; Molecular Sequence Data; Multigene Family; Phenols; Phylogeny; Plant Proteins; Point Mutation; Polymerase Chain Reaction; Protein Sorting Signals; RNA, Messenger; Sequence Alignment; Sequence Homology, Amino Acid; Thuja

2002