lignans and deoxynivalenol

lignans has been researched along with deoxynivalenol* in 1 studies

Other Studies

1 other study(ies) available for lignans and deoxynivalenol

ArticleYear
Schisandrin A protects intestinal epithelial cells from deoxynivalenol-induced cytotoxicity, oxidative damage and inflammation.
    Scientific reports, 2019, 12-16, Volume: 9, Issue:1

    Extensive research has revealed the association of continued oxidative stress with chronic inflammation, which could subsequently affect many different chronic diseases. The mycotoxin deoxynivalenol (DON) frequently contaminates cereals crops worldwide, and are a public health concern since DON ingestion may result in persistent intestinal inflammation. There has also been considerable attention over the potential of DON to provoke oxidative stress. In this study, the cytoprotective effect of Schisandrin A (Sch A), one of the most abundant active dibenzocyclooctadiene lignans in the fruit of Schisandra chinensis (Turcz.) Baill (also known as Chinese magnolia-vine), was investigated in HT-29 cells against DON-induced cytotoxicity, oxidative stress and inflammation. Sch A appeared to protect against DON-induced cytotoxicity in HT-29 cells, and significantly lessened the DON-stimulated intracellular reactive oxygen species and nitrogen oxidative species production. Furthermore, Sch A lowered DON-induced catalase, superoxide dismutase and glutathione peroxidase antioxidant enzyme activities but maintains glutathione S transferase activity and glutathione levels. Mechanistic studies suggest that Sch A reduced DON-induced oxidative stress by down-regulating heme oxygenase-1 expression via nuclear factor (erythroid-derived 2)-like 2 signalling pathway. In addition, Sch A decreased the DON-induced cyclooxygenase-2 expression and prostaglandin E2 production and pro-inflammatory cytokine interleukin 8 expression and secretion. This may be mediated by preventing DON-induced translocation of nuclear factor-κB, as well as activation of mitogen-activated protein kinases pathways. In the light of these findings, we concluded that Sch A exerted a cytoprotective role in DON-induced toxicity in vitro, and it would be valuable to examine in vivo effects.

    Topics: Catalase; Cell Cycle Checkpoints; Cell Death; Cell Nucleus; Cell Survival; Cyclooctanes; Cyclooxygenase 2; Cytoprotection; Dinoprostone; Enterocytes; Gene Expression Regulation; Glutathione Peroxidase; Heme Oxygenase-1; HT29 Cells; Humans; Inflammation; Inflammation Mediators; Interleukin-8; Lignans; Lipid Peroxidation; MAP Kinase Signaling System; Models, Biological; NF-E2-Related Factor 2; NF-kappa B; Nitrites; Oxidative Stress; Polycyclic Compounds; Reactive Oxygen Species; RNA, Messenger; Superoxide Dismutase; Trichothecenes

2019