lignans and coniferyl-alcohol

lignans has been researched along with coniferyl-alcohol* in 16 studies

Reviews

1 review(s) available for lignans and coniferyl-alcohol

ArticleYear
Lignans of Sesame (
    Molecules (Basel, Switzerland), 2021, Feb-07, Volume: 26, Issue:4

    Major lignans of sesame sesamin and sesamolin are benzodioxol--substituted furofurans. Sesamol, sesaminol, its epimers, and episesamin are transformation products found in processed products. Synthetic routes to all lignans are known but only sesamol is synthesized industrially. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, followed by the formation of dioxoles, oxidation, and glycosylation. Most genes of the lignan pathway in sesame have been identified but the inheritance of lignan content is poorly understood. Health-promoting properties make lignans attractive components of functional food. Lignans enhance the efficiency of insecticides and possess antifeedant activity, but their biological function in plants remains hypothetical. In this work, extensive literature including historical texts is reviewed, controversial issues are critically examined, and errors perpetuated in literature are corrected. The following aspects are covered: chemical properties and transformations of lignans; analysis, purification, and total synthesis; occurrence in

    Topics: Benzodioxoles; Dioxoles; Furans; Lignans; Oxidation-Reduction; Phenols; Seeds; Sesamum

2021

Other Studies

15 other study(ies) available for lignans and coniferyl-alcohol

ArticleYear
Identification and functional characterization of the dirigent gene family in Phryma leptostachya and the contribution of PlDIR1 in lignan biosynthesis.
    BMC plant biology, 2023, May-31, Volume: 23, Issue:1

    Furofuran lignans, the main insecticidal ingredient in Phryma leptostachya, exhibit excellent controlling efficacy against a variety of pests. During the biosynthesis of furofuran lignans, Dirigent proteins (DIRs) are thought to be dominant in the stereoselective coupling of coniferyl alcohol to form ( ±)-pinoresinol. There are DIR family members in almost every vascular plant, but members of DIRs in P. leptostachya are unknown. To identify the PlDIR genes and elucidate their functions in lignan biosynthesis, this study performed transcriptome-wide analysis and characterized the catalytic activity of the PlDIR1 protein.. Fifteen full-length unique PlDIR genes were identified in P. leptostachya. A phylogenetic analysis of the PlDIRs classified them into four subfamilies (DIR-a, DIR-b/d, DIR-e, and DIR-g), and 12 conserved motifs were found among them. In tissue-specific expression analysis, except for PlDIR7, which displayed the highest transcript abundance in seeds, the other PlDIRs showed preferential expression in roots, leaves, and stems. Furthermore, the treatments with signaling molecules demonstrated that PlDIRs could be significantly induced by methyl jasmonate (MeJA), salicylic acid (SA), and ethylene (ETH), both in the roots and leaves of P. leptostachya. In examining the tertiary structure of the protein and the critical amino acids, it was found that PlDIR1, one of the DIR-a subfamily members, might be involved in the region- and stereo-selectivity of the phenoxy radical. Accordingly, LC-MS/MS analysis demonstrated the catalytic activity of recombinant PlDIR1 protein from Escherichia coli to direct coniferyl alcohol coupling into ( +)-pinoresinol. The active sites and hydrogen bonds of the interaction between PlDIR1 and bis-quinone methide (bisQM), the intermediate in ( +)-pinoresinol formation, were analyzed by molecular docking. As a result, 18 active sites and 4 hydrogen bonds (Asp-42, Ala-113, Leu-138, Arg-143) were discovered in the PlDIR1-bisQM complex. Moreover, correlation analysis indicated that the expression profile of PlDIR1 was closely connected with lignan accumulations after SA treatment.. The results of this study will provide useful clues for uncovering P. leptostachya's lignan biosynthesis pathway as well as facilitate further studies on the DIR family.

    Topics: Chromatography, Liquid; Lignans; Molecular Docking Simulation; Phylogeny; Plant Proteins; Tandem Mass Spectrometry

2023
Dirigent Proteins Guide Asymmetric Heterocoupling for the Synthesis of Complex Natural Product Analogues.
    Journal of the American Chemical Society, 2021, 04-07, Volume: 143, Issue:13

    Phenylpropanoids are a class of abundant building blocks found in plants and derived from phenylalanine and tyrosine. Phenylpropanoid polymerization leads to the second most abundant biopolymer lignin while stereo- and site-selective coupling generates an array of lignan natural products with potent biological activity, including the topoisomerase inhibitor and chemotherapeutic etoposide. A key step in etoposide biosynthesis involves a plant dirigent protein that promotes selective dimerization of coniferyl alcohol, a common phenylpropanoid, to form (+)-pinoresinol, a critical C

    Topics: Biological Products; Lignans; Oxidation-Reduction; Phenols; Plant Proteins; Podophyllum; Proteins; Stereoisomerism

2021
Promotion of mammalian angiogenesis by neolignans derived from soybean extracellular fluids.
    PloS one, 2018, Volume: 13, Issue:5

    Excessive or insufficient angiogenesis is associated with major classes of chronic disease. Although less studied, small molecules which can promote angiogenesis are being sought as potential therapeutics for cardiovascular and peripheral arterial disease and stroke. Here we describe a bioassay-directed discovery approach utilising size exclusion and liquid chromatography to purify components of soybean xylem sap that have pro-angiogenic activity. Using high resolution accurate mass spectrometry and nuclear magnetic resonance spectroscopy, the structure of two pro-angiogenic molecules (FK1 and FK2) were identified as erythro-guaiacylglycerol-8-O-4'-(coniferyl alcohol) ether (eGGCE), and threo-guaiacylglycerol-8-O-4'-(coniferyl alcohol) ether (tGGCE). These two molecules, which are coniferyl neolignan stereoisomers, promoted in vitro angiogenesis in the μM to nM range. Independently sourced samples of eGGCE and tGGCE exhibited comparable pro-angiogenic activity to the soybean derived molecules. The cellular mode of action of these molecules was investigated by studying their effect on endothelial cell proliferation, migration, tube formation and adhesion to the extracellular matrix (ECM) components, fibronectin and vitronectin. They were found to enhance endothelial cell proliferation and endothelial cell tube formation on Matrigel, but did not affect endothelial cell migration or adhesion to fibronectin and vitronectin. Thus, this study has identified two coniferyl neolignan stereoisomers, eGGCE and tGGCE, as pro-angiogenic molecules, with eGGCE being less active than tGGCE.

    Topics: Angiogenesis Inducing Agents; Animals; Cell Adhesion; Cell Division; Cell Movement; Cells, Cultured; Collagen; Drug Combinations; Drug Evaluation, Preclinical; Endothelial Cells; Glycine max; Human Umbilical Vein Endothelial Cells; Humans; Laminin; Lignans; Molecular Structure; Neovascularization, Physiologic; Nuclear Magnetic Resonance, Biomolecular; Phenols; Plant Extracts; Proteoglycans; Rats

2018
Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum.
    The New phytologist, 2014, Volume: 202, Issue:3

    Verticillium longisporum is a soil-borne vascular pathogen causing economic loss in rape. Using the model plant Arabidopsis this study analyzed metabolic changes upon fungal infection in order to identify possible defense strategies of Brassicaceae against this fungus. Metabolite fingerprinting identified infection-induced metabolites derived from the phenylpropanoid pathway. Targeted analysis confirmed the accumulation of sinapoyl glucosides, coniferin, syringin and lignans in leaves from early stages of infection on. At later stages, the amounts of amino acids increased. To test the contribution of the phenylpropanoid pathway, mutants in the pathway were analyzed. The sinapate-deficient mutant fah1-2 showed stronger infection symptoms than wild-type plants, which is most likely due to the lack of sinapoyl esters. Moreover, the coniferin accumulating transgenic plant UGT72E2-OE was less susceptible. Consistently, sinapoyl glucose, coniferyl alcohol and coniferin inhibited fungal growth and melanization in vitro, whereas sinapyl alcohol and syringin did not. The amount of lignin was not significantly altered supporting the notion that soluble derivatives of the phenylpropanoid pathway contribute to defense. These data show that soluble phenylpropanoids are important for the defense response of Arabidopsis against V. longisporum and that metabolite fingerprinting is a valuable tool to identify infection-relevant metabolic markers.

    Topics: Arabidopsis; Biomarkers; Biosynthetic Pathways; Cinnamates; Coumaric Acids; Disease Resistance; Gene Expression Regulation, Plant; Genes, Plant; Glucosides; Lignans; Lignin; Metabolomics; Mutation; Phenols; Plant Diseases; Plant Leaves; Plant Vascular Bundle; Propanols; Solubility; Verticillium

2014
Transcriptomic changes following the compatible interaction Vitis vinifera-Erysiphe necator. Paving the way towards an enantioselective role in plant defence modulation.
    Plant physiology and biochemistry : PPB, 2013, Volume: 68

    The compatible interaction between Erysiphe necator and Vitis vinifera induces significant alterations in the host transcriptome, affecting essentially those genes involved in signalling and secondary metabolite biosynthetic pathways. The precise transcriptomic changes vary from the early events to later stages of infection. In the present work, suppressive subtraction hybridization (SSH) was used to identify several differentially expressed transcripts in symptomatic and asymptomatic leaves from powdery mildew infected grapevines following a long term interaction. The detected transcripts show little or no correlation with similar expression studies concerning the early stages of infection which suggests distinct host responses occur before and after the infection is established. The transcription level of thirteen genes was assessed through qRT-PCR using appropriately selected and validated normalization genes. With one exception, all these genes underwent moderate levels of differential transcription, with log2-fold change values ranging from -2.65 to 4.36. The exception, a dirigent-like (DIR) protein, was upregulated over 180 fold in symptomatic leaves, suggesting an important role for stereochemical selectivity in the compatible interaction E. necator-V. vinifera. DIR copy number was determined in the genome of three grapevine cultivars exhibiting high (Carignan), moderate (Fernão Pires) and low (Touriga Nacional) sensitivity to E. necator. It was found to be a two-copy gene in all cultivars analyzed. Further analysis involving DIR metabolic neighbourhood transcripts was performed. The possible physiological significance of the detected DIR upregulation is discussed.

    Topics: Ascomycota; Gene Dosage; Gene Expression Regulation, Plant; Genetic Predisposition to Disease; Host-Pathogen Interactions; In Situ Hybridization; Lignans; Phenols; Plant Diseases; Plant Proteins; Real-Time Polymerase Chain Reaction; Reproducibility of Results; Reverse Transcriptase Polymerase Chain Reaction; Transcriptome; Vitis

2013
Optimized expression of the dirigent protein AtDIR6 in Pichia pastoris and impact of glycosylation on protein structure and function.
    Applied microbiology and biotechnology, 2013, Volume: 97, Issue:16

    Phenoxy radical coupling reactions are involved in the biosynthesis of lignans in planta. Interestingly, the reaction can be guided by dirigent proteins, which mediate the stereoselective formation of either (+) or (-)-pinoresinol from coniferyl alcohol. So far, the mechanism is poorly understood, and for detailed mechanistic studies, a heterologous expression platform which allows the cost-effective, fast, and robust expression in high yields is needed. We established a reliable, high-yield fed-batch fermentation process with Pichia pastoris resulting in 47 mg L⁻¹ of the dirigent protein AtDIR6, which represents a more than 250-fold increase compared to previous studies. Biochemical characterization of AtDIR6 produced with P. pastoris showed an overall agreement in protein structure, N-glycosylation sites, and dirigent activity compared to AtDIR6 produced by plant cell cultures of Solanum peruvianum. CD spectroscopy verified the β-barrel structure proposed by earlier studies and bioconversion experiments revealed similar activities to plant-derived protein, validating P. pastoris as a suitable expression system for dirigent proteins. Compared to the complex glycan structures of most plant cells, proteins produced with P. pastoris have the advantage that they can be enzymatically deglycosylated under non-denaturating conditions. With this study, we demonstrate that the glycan structures of AtDIR6 are essential for structure, solubility, and function of the protein as deglycosylation induced conformational changes leading to the complete loss in dirigent activity and subsequent protein aggregation.

    Topics: Arabidopsis; Arabidopsis Proteins; Circular Dichroism; Furans; Gene Expression; Glycosylation; Lignans; Phenols; Pichia; Protein Conformation; Recombinant Proteins

2013
A model of dirigent proteins derived from structural and functional similarities with allene oxide cyclase and lipocalins.
    The FEBS journal, 2012, Volume: 279, Issue:11

    Dirigent proteins impart stereoselectivity on the phenoxy radical-coupling reaction, yielding optically active lignans from two molecules of coniferyl alcohol. By an unknown mechanism, they direct the coupling of two phenoxy radicals toward the formation of optically active (+)- or (-)-pinoresinol. We show here that the dirigent protein AtDIR6 from Arabidopsis thaliana is a homodimeric all-beta protein in the superfamily of calycins. Based on its homology with calycins, the structure of AtDIR6 was modeled using allene oxide cyclase as template. The structural model of AtDIR6 was supported experimentally by confirmation of a predicted disulfide bridge and by the characterization of two N-linked glycans at the solvent-exposed protein surface. The model shows AtDIR6 as an eight-stranded antiparallel β-barrel with a central hydrophobic cavity for substrate binding, suggesting that dirigent proteins evolved from hydrophobic ligand-binding proteins. The data are fully consistent with the current view of the dirigent protein mode of action, according to which each subunit of the homodimer captures one of the substrate radicals and orients them in a way that precludes undesired reaction channels, thus favoring the formation of the optically pure coupling product.

    Topics: Amino Acid Sequence; Arabidopsis; Arabidopsis Proteins; Binding Sites; Furans; Hydrophobic and Hydrophilic Interactions; Intramolecular Oxidoreductases; Lignans; Lipocalins; Models, Molecular; Molecular Sequence Data; Phenols; Protein Binding; Protein Multimerization; Protein Structure, Secondary; Sequence Homology, Amino Acid; Stereoisomerism; Structural Homology, Protein

2012
Synthesis and characterization of new 5-linked pinoresinol lignin models.
    Chemistry (Weinheim an der Bergstrasse, Germany), 2012, Dec-14, Volume: 18, Issue:51

    Pinoresinol structures, featuring a β-β'-linkage between lignin monomer units, are important in softwood lignins and in dicots and monocots, particularly those that are downregulated in syringyl-specific genes. Although readily detected by NMR spectroscopy, pinoresinol structures largely escaped detection by β-ether-cleaving degradation analyses presumably due to the presence of the linkages at the 5 positions, in 5-5'- or 5-O-4'-structures. In this study, which is aimed at helping better understand 5-linked pinoresinol structures by providing the required data for NMR characterization, new lignin model compounds were synthesized through biomimetic peroxidase-mediated oxidative coupling reactions between pre-formed (free-phenolic) coniferyl alcohol 5-5'- or 5-O-4'-linked dimers and a coniferyl alcohol monomer. It was found that such dimers containing free-phenolic coniferyl alcohol moieties can cross-couple with the coniferyl alcohol producing pinoresinol-containing trimers (and higher oligomers) in addition to other homo- and cross-coupled products. Eight new lignin model compounds were obtained and characterized by NMR spectroscopy, and one tentatively identified cross-coupled β-O-4'-product was formed from a coniferyl alcohol 5-O-4'-linked dimer. It was demonstrated that the 5-5'- and 5-O-4'-linked pinoresinol structures could be readily differentiated by using heteronuclear multiple-bond correlation (HMBC) NMR spectroscopy. With appropriate modification (etherification or acetylation) to the newly obtained model compounds, it would be possible to identify the 5-5'- or 5-O-4'-linked pinoresinol structures in softwood lignins by 2D HMBC NMR spectroscopic methods. Identification of the cross-coupled dibenzodioxocin from a coniferyl alcohol 5-5'-linked moiety suggested that thioacidolysis or derivatization followed by reductive cleavage (DFRC) could be used to detect and identify whether the coniferyl alcohol itself undergoes 5-5'-cross-linking during lignification.

    Topics: Cross-Linking Reagents; Furans; Lignans; Lignin; Magnetic Resonance Spectroscopy; Phenols

2012
Monolignol oxidation by xylem peroxidase isoforms of Norway spruce (Picea abies) and silver birch (Betula pendula).
    Tree physiology, 2006, Volume: 26, Issue:5

    We partially purified peroxidase isoform fractions from xylem extracts of a gymnosperm, Norway spruce (Picea abies (L.) Karst.), and an angiosperm, silver birch (Betula pendula Roth.), to determine the participation of xylem-localized peroxidases in polymerization of different types of lignin in vivo. Several peroxidase fractions varying in isoelectric point values from acidic to basic were tested for their ability to catalyze the oxidation of the monolignols coniferyl alcohol, sinapyl alcohol and p-coumaryl alcohol in vitro. All of the xylem peroxidases extracted from Norway spruce and most of those from silver birch showed the highest rate of oxidation with coniferyl alcohol in the presence of hydrogen peroxide. The exception was an acidic peroxidase fraction (pI 3.60-3.65) from silver birch that exhibited higher oxidation activity for sinapyl alcohol than for coniferyl alcohol. For the xylem enzyme fractions extracted from silver birch, the ability to oxidize the artificial phenolic substrate syringaldazine coincided with high specific activity for sinapyl alcohol. Therefore, we conclude that the acidic, neutral and basic xylem peroxidases of Norway spruce all function in the synthesis of guaiacyl-type lignin, whereas in silver birch the acidic peroxidases preferentially oxidize sinapyl subunits. The latter provides a mechanism for synthesis of guaiacyl-syringyl lignin typical of tracheid cell walls in angiosperm trees.

    Topics: Betula; Biopolymers; Isoenzymes; Lignans; Lignin; Molecular Structure; Oxidation-Reduction; Peroxidases; Phenols; Phenylpropionates; Picea; Xylem

2006
Kinetic study of coniferyl alcohol radical binding to the (+)-pinoresinol forming dirigent protein.
    Biochemistry, 2004, Mar-09, Volume: 43, Issue:9

    An essential step in lignan and lignin formation in planta is one electron oxidation of (E)-coniferyl alcohol (CA) to generate the radical intermediate (CA(*)), which can then undergo directed radical-radical couplings in vivo. For lignan formation in vitro and in vivo, stereoselective coupling of CA(*) only occurs to afford (+)-pinoresinol in the additional presence of (+)-pinoresinol forming dirigent protein (DP). Presented herein is a kinetic and thermodynamic study which reveals the central mechanistic details of the coupling process involved in DP-mediated coupling. DP activity was maximal between pH 4.25 and pH 6.0, with activity being maintained at temperatures below 33 degrees C. Equilibrium binding assays revealed that coniferyl alcohol was only weakly bound to the DP, with a K(D) of 370 +/- 65 microM. On the other hand, the enantiomeric excess of (+)-pinoresinol formed was dependent on both DP concentration and rate of CA oxidation and, thus, on apparent steady-state [CA(*)]. The data obtained could best be explained using a kinetic model where radical-radical coupling via DP competes with that occurring in open solution. Using this model, an apparent K(M) of about 10 nM was estimated from the saturation behavior of (+)-pinoresinol formation with respect to apparent steady-state [CA(*)]. These data strongly suggest that CA(*), rather than CA, is the substrate for DP, in agreement with earlier predictions. A mechanism of directed radical-radical coupling, where two coniferyl alcohol radical substrates are bound per protein dimer, is proposed.

    Topics: Binding, Competitive; Dimerization; Free Radicals; Furans; Hydrogen-Ion Concentration; Kinetics; Lignans; Models, Chemical; Phenols; Plant Proteins; Protein Binding; Stereoisomerism; Temperature

2004
Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center.
    Science (New York, N.Y.), 1997, Jan-17, Volume: 275, Issue:5298

    The regio- and stereospecificity of bimolecular phenoxy radical coupling reactions, of especial importance in lignin and lignan biosynthesis, are clearly controlled in some manner in vivo; yet in vitro coupling by oxidases, such as laccases, only produce racemic products. In other words, laccases, peroxidases, and comparable oxidases are unable to control regio- or stereospecificity by themselves and thus some other agent must exist. A 78-kilodalton protein has been isolated that, in the presence of an oxidase or one electron oxidant, effects stereoselective bimolecular phenoxy radical coupling in vitro. Itself lacking a catalytically active (oxidative) center, its mechanism of action is presumed to involve capture of E-coniferyl alcohol-derived free-radical intermediates, with consequent stereoselective coupling to give (+)-pinoresinol.

    Topics: Dimerization; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Free Radicals; Furans; Kinetics; Laccase; Lignans; Molecular Conformation; Oxidation-Reduction; Oxidoreductases; Phenols; Plant Proteins; Stereoisomerism

1997
New "guiding" protein discovered.
    Science (New York, N.Y.), 1997, Jan-17, Volume: 275, Issue:5298

    Topics: Lignans; Molecular Conformation; Oxidoreductases; Phenols; Plant Proteins; Stereoisomerism

1997
Towards the specification of consecutive steps in macromolecular lignin assembly.
    Phytochemistry, 1995, Volume: 39, Issue:1

    When Pinus taeda cell suspension cultures are exposed to 8% sucrose solution, the cells undergo significant intracellular disruption, irregular wall thickening/lignification with concomitant formation of an 'extracellular lignin precipitate. However, addition of potassium iodide (KI), an H202 scavenger, inhibits this lignification response, while the ability to synthesize the monolignols, p-coumaryl and coniferyl alcohols, is retained. Lignin synthesis (i.e. polymerization) is thus temporarily correlated with H202 generation, strongly implying a regulatory role for the latter. Time course analyses of extracellular metabolites leading up to polymer formation reveal that coniferyl alcohol, but not p-coumaryl alcohol, undergoes substantial coupling reactions to give various lignans. Of these, the metabolites, dihydrodehydrodiconiferyl alcohol, shonanin (divanillyl tetrahydrofuran) and its apparent aryl tetralin derivative, cannot be explained simply on the basis of phenolic coupling. It is proposed that these moieties are the precursors of so-called reduced substructures in the lignin macromolecule. This adds a new perspective to the lignin assembly mechanism.

    Topics: Cell Wall; Cells, Cultured; Hydrogen Peroxide; Lignans; Lignin; Magnetic Resonance Spectroscopy; Oxidation-Reduction; Phenols; Potassium Iodide; Sucrose; Trees

1995
On the stereoselective synthesis of (+)-pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol.
    Phytochemistry, 1992, Volume: 31, Issue:11

    The residue from Forsythia suspensa stems, upon removal of soluble enzymes, has provided the first evidence for a stereoselective coupling enzyme in lignan biosynthesis. This preparation catalyses the preferred formation (ca 65%) of (+)-[8,8'-14C]pinoresinol from [8-14C]coniferyl alcohol in the absence of exogenously provided cofactors; addition of H2O2 had little effect on enantiomeric composition. However, when NAD and malate were supplied, the stereoselectivity of the coupling reaction was significantly enhanced and pinoresinol consisting of ca 80% of the (+)-antipode was obtained. Clearly, the insoluble residue contains a specific coupling enzyme which catalyses (+)-pinoresinol formation from coniferyl alcohol. By contrast, when [8-14C]sinapyl alcohol was employed as substrate, only racemic syringaresinols were formed: this non-stereoselective peroxidase-catalysed coupling reaction presumably accounts for the low levels of (-)-pinoresinol encountered in this system when coniferyl alcohol is used as a substrate.

    Topics: Hydrogen Peroxide; Lignans; Malate Dehydrogenase; Malates; NAD; Peroxidases; Phenols; Plant Extracts; Plants; Stereoisomerism

1992
An extraordinary accumulation of (-)-pinoresinol in cell-free extracts of Forsythia intermedia: evidence for enantiospecific reduction of (+)-pinoresinol.
    Phytochemistry, 1992, Volume: 31, Issue:11

    Stereoselective and enantiospecific transformation mechanisms in lignan biogenesis are only now yielding to scientific inquiry: it has been shown that soluble cell-free preparations from Forsythia intermedia catalyse the formation of the enantiomerically pure lignan, (-)-secoisolariciresinol, when incubated with coniferyl alcohol in the presence of NAD(P)H and H2O2. Surprisingly, (-)-pinoresinol also accumulates in this soluble cell-free assay mixture in > 96% enantiomeric excess, even though it is not the naturally occurring antipode present in Forsythia sp. But these soluble cell-free preparations do not engender stereoselective coupling; instead, racemic pinoresinols are first formed, catalysed by an H2O2-dependent peroxidase reaction. An enantiospecific NAD(P)H reductase then converts (+)-pinoresinol, and not the (-)-antipode, into (-)-secoisolariciresinol. Stereoselective synthesis [correction of syntheis] of (+)-pinoresinol from E-coniferyl alcohol is, however, catalysed by an insoluble enzyme preparation in F. suspensa, obtained following removal of readily soluble and ionically bound enzymes; no exogenously supplied cofactors were required other than oxygen, although the reaction was stimulated by NAD-malate addition. Thus, the overall biochemical pathway to enantiomerically pure (-)-secoisolariciresinol has been delineated.

    Topics: Hydrogen Peroxide; Lignans; NADP; Oxidoreductases; Peroxidases; Phenols; Plant Extracts; Plants; Stereoisomerism

1992