lidocaine has been researched along with mibefradil in 14 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 8 (57.14) | 29.6817 |
2010's | 6 (42.86) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Topliss, JG; Yoshida, F | 1 |
Bacsó, Z; Cianfriglia, M; Fenyvesi, F; Goda, K; Kappelmayer, J; Lustyik, G; Nagy, H; Szabó, G; Szilasi, M | 1 |
Bleich, S; Gulbins, E; Kornhuber, J; Reichel, M; Terfloth, L; Tripal, P; Wiltfang, J | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Du-Cuny, L; Mash, EA; Meuillet, EJ; Moses, S; Powis, G; Song, Z; Zhang, S | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Annand, R; Gozalbes, R; Jacewicz, M; Pineda-Lucena, A; Tsaioun, K | 1 |
Barber, S; Dew, TP; Farrell, TL; Poquet, L; Williamson, G | 1 |
Kahlert, S; Martínez-Sánchez, M; Reiser, G; Reymann, KG; Schröder, UH; Striggow, F | 1 |
Boddy, G; Daniel, EE; Galante, G; Willis, A | 1 |
Chartier, D; Leblanc, N; Nattel, S; Ruben, PC; Sun, H; Varela, D; Zamponi, GW | 1 |
Berrebi, AS; Felix, RA; Fridberger, A; Leijon, S; Magnusson, AK | 1 |
14 other study(ies) available for lidocaine and mibefradil
Article | Year |
---|---|
QSAR model for drug human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship | 2000 |
Distinct groups of multidrug resistance modulating agents are distinguished by competition of P-glycoprotein-specific antibodies.
Topics: Adenosine Triphosphatases; Animals; Anti-Bacterial Agents; Antibodies, Monoclonal; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; Binding, Competitive; Calcium Channel Blockers; Cyclosporine; Detergents; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Flow Cytometry; Fluoresceins; Humans; Ivermectin; Mice; NIH 3T3 Cells; Substrate Specificity | 2004 |
Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model.
Topics: Algorithms; Animals; Cell Line; Cell Line, Tumor; Chemical Phenomena; Chemistry, Physical; Enzyme Inhibitors; Humans; Hydrogen-Ion Concentration; Molecular Conformation; Quantitative Structure-Activity Relationship; Rats; Sphingomyelin Phosphodiesterase | 2008 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain.
Topics: Antineoplastic Agents; Blood Proteins; Caco-2 Cells; Cell Membrane Permeability; Computer Simulation; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Phosphoproteins; Protein Binding; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-akt; Quantitative Structure-Activity Relationship | 2009 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
QSAR-based permeability model for drug-like compounds.
Topics: Caco-2 Cells; Cell Membrane Permeability; Drug Discovery; Humans; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2011 |
Predicting phenolic acid absorption in Caco-2 cells: a theoretical permeability model and mechanistic study.
Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Cinnamates; Enterocytes; Humans; Hydrophobic and Hydrophilic Interactions; Intestinal Absorption; Kinetics; Models, Biological; Molecular Conformation; Osmolar Concentration; Phenols | 2012 |
Na(+) and Ca(2+) homeostasis pathways, cell death and protection after oxygen-glucose-deprivation in organotypic hippocampal slice cultures.
Topics: Adenosine Triphosphate; Animals; Animals, Newborn; Boron Compounds; Calcium; Calcium Channel Blockers; Cell Death; Clonazepam; Dantrolene; Dizocilpine Maleate; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Fura-2; Glucose; Hippocampus; Hypoxia; In Situ Nick-End Labeling; Indoles; Intracellular Space; Ion Exchange; Lidocaine; Mibefradil; Nimodipine; Organ Culture Techniques; Quinoxalines; Rats; Rats, Wistar; Sodium; Sodium Channel Blockers; Thiazepines; Thiourea; Time Factors | 2004 |
Sodium-, chloride-, and mibefradil-sensitive calcium channels in intestinal pacing in wild-type and W/WV mice.
Topics: 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Animals; Calcium; Calcium Channel Blockers; Calcium Channels, L-Type; Calcium Channels, T-Type; Chloride Channels; Gastrointestinal Motility; Intestinal Mucosa; Lidocaine; Male; Mibefradil; Mice; Mice, Inbred BALB C; Muscle Contraction; Muscles; Sodium; Sodium Channel Blockers; Sodium Channels; Tetrodotoxin | 2006 |
Differential interactions of Na+ channel toxins with T-type Ca2+ channels.
Topics: Amino Acid Sequence; Animals; Calcium Channel Blockers; Calcium Channels, L-Type; Calcium Channels, T-Type; Cell Line; Cells, Cultured; Dogs; Drug Interactions; Humans; Lidocaine; Marine Toxins; Membrane Potentials; Mibefradil; Molecular Sequence Data; Myocytes, Cardiac; Nickel; Saxitoxin; Sequence Homology, Amino Acid; Sodium Channel Blockers; Tetrodotoxin; Transfection | 2008 |
Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus.
Topics: Acoustic Stimulation; Action Potentials; Anesthetics, Local; Animals; Animals, Newborn; Auditory Pathways; Biophysics; Calcium; Calcium Channel Blockers; Cyclic Nucleotide-Gated Cation Channels; Electric Stimulation; Female; Gene Expression Regulation, Developmental; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; In Vitro Techniques; Ion Channels; Lidocaine; Mibefradil; Mice; Mice, Inbred C57BL; Mice, Inbred CBA; Nerve Net; Neural Inhibition; Neurons; Olivary Nucleus; Periodicity; Potassium Channels; Psychoacoustics; Pyrimidines; Reaction Time; Sound; Tetrodotoxin | 2011 |