lidocaine and enalapril

lidocaine has been researched along with enalapril in 12 studies

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (8.33)18.2507
2000's5 (41.67)29.6817
2010's6 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Johans, C; Kinnunen, PK; Söderlund, T; Suomalainen, P1
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM1
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M1
Chen, L; He, Z; Li, H; Liu, J; Liu, X; Sui, X; Sun, J; Wang, Y; Zhang, W1
Du-Cuny, L; Mash, EA; Meuillet, EJ; Moses, S; Powis, G; Song, Z; Zhang, S1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Annand, R; Gozalbes, R; Jacewicz, M; Pineda-Lucena, A; Tsaioun, K1
Giacomini, KM; Huang, Y; Khuri, N; Kido, Y; Kosaka, A; Morrissey, KM; Sali, A; Wittwer, MB; Zhang, X; Zur, AA1
Bellman, K; Knegtel, RM; Settimo, L1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Roberts, MS; Stedtler, C; Weiss, M1
Fukami, N; Nakamura, K1

Reviews

1 review(s) available for lidocaine and enalapril

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

11 other study(ies) available for lidocaine and enalapril

ArticleYear
Surface activity profiling of drugs applied to the prediction of blood-brain barrier permeability.
    Journal of medicinal chemistry, 2004, Mar-25, Volume: 47, Issue:7

    Topics: Blood-Brain Barrier; Lipid Bilayers; Micelles; Permeability; Pharmaceutical Preparations; Structure-Activity Relationship; Surface Properties

2004
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
    Journal of medicinal chemistry, 2008, Oct-09, Volume: 51, Issue:19

    Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship

2008
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
    Journal of medicinal chemistry, 2008, Nov-13, Volume: 51, Issue:21

    Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship

2008
Prediction of volume of distribution values in human using immobilized artificial membrane partitioning coefficients, the fraction of compound ionized and plasma protein binding data.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:11

    Topics: Blood Proteins; Chemistry, Physical; Computer Simulation; Humans; Membranes, Artificial; Models, Biological; Pharmaceutical Preparations; Protein Binding; Tissue Distribution

2009
Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain.
    Bioorganic & medicinal chemistry, 2009, Oct-01, Volume: 17, Issue:19

    Topics: Antineoplastic Agents; Blood Proteins; Caco-2 Cells; Cell Membrane Permeability; Computer Simulation; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Phosphoproteins; Protein Binding; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-akt; Quantitative Structure-Activity Relationship

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
QSAR-based permeability model for drug-like compounds.
    Bioorganic & medicinal chemistry, 2011, Apr-15, Volume: 19, Issue:8

    Topics: Caco-2 Cells; Cell Membrane Permeability; Drug Discovery; Humans; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship

2011
Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling.
    Journal of medicinal chemistry, 2013, Feb-14, Volume: 56, Issue:3

    Topics: Computer Simulation; Fluorescent Dyes; Organic Cation Transport Proteins; Prescription Drugs

2013
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
    Pharmaceutical research, 2014, Volume: 31, Issue:4

    Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation

2014
On the validity of the dispersion model of hepatic drug elimination when intravascular transit time densities are long-tailed.
    Bulletin of mathematical biology, 1997, Volume: 59, Issue:5

    Topics: Animals; Enalapril; Lidocaine; Liver; Mathematics; Metabolic Clearance Rate; Models, Biological; Normal Distribution; Pharmacokinetics; Tissue Distribution

1997
Altered responses to vasopressors of a patient medicated with carvedilol, pilsicainide and enalapril.
    Journal of anesthesia, 2014, Volume: 28, Issue:4

    Topics: Adrenergic beta-Antagonists; Angiotensin-Converting Enzyme Inhibitors; Anti-Arrhythmia Agents; Atrial Fibrillation; Carbazoles; Carvedilol; Drug Interactions; Enalapril; Humans; Hypotension; Lidocaine; Male; Middle Aged; Propanolamines; Vasoconstrictor Agents

2014