licostinel and 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline

licostinel has been researched along with 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline* in 1 studies

Other Studies

1 other study(ies) available for licostinel and 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline

ArticleYear
Effects of AMPA/kainate glutamate receptor antagonists on cocaine-induced convulsions and lethality in mice.
    European journal of pharmacology, 1999, Dec-15, Volume: 386, Issue:2-3

    Prior studies demonstrate that NMDA receptor antagonists attenuate cocaine-induced convulsions and lethality. Since glutamate is the primary neurotransmitter for NMDA receptors, pharmacological interventions to lower glutamatergic activity through non-NMDA ionotropic receptor-mediated mechanisms were evaluated for their ability to prevent the convulsive and lethal effects of cocaine. Pre-treatment of male, Swiss Webster mice with the alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA)/kainate receptor antagonists 1,2,3,4-tetrahydro-6-nitro-2, 3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX; 10-80 mg/kg, i.p.) or 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2, 3-benzodiazepine hydrochloride (GYKI 52466; 10-20 mg/kg, i.p.) failed to significantly attenuate cocaine-induced convulsions or lethality. Although ineffective when administered alone, NBQX enhanced the protective effects of 5-nitro-6,7-dichloro-1, 4-dihydro-2,3-quinoxalinedione (ACEA-1021), an NMDA/glycine site antagonist, when administered in combination. The mixed NMDA/non-NMDA receptor competitive antagonist 5-chloro-7-trifluoromethyl-1,2,3,4-tetrahydroquinoxaline-2,3-dione (ACEA-1011) also protected against the convulsive effects of cocaine. The data suggest that AMPA/kainate receptors indirectly influence the pathophysiological changes that occur after a cocaine overdose through modulation of NMDA receptors.

    Topics: Animals; Anti-Anxiety Agents; Benzodiazepines; Cocaine; Drug Therapy, Combination; Excitatory Amino Acid Antagonists; Male; Mice; Quinoxalines; Receptors, AMPA; Receptors, Kainic Acid; Seizures

1999