levofloxacin has been researched along with spironolactone in 7 studies
Studies (levofloxacin) | Trials (levofloxacin) | Recent Studies (post-2010) (levofloxacin) | Studies (spironolactone) | Trials (spironolactone) | Recent Studies (post-2010) (spironolactone) |
---|---|---|---|---|---|
4,346 | 581 | 2,209 | 7,222 | 960 | 1,923 |
Protein | Taxonomy | levofloxacin (IC50) | spironolactone (IC50) |
---|---|---|---|
Chain A, Mineralocorticoid receptor | Homo sapiens (human) | 0.049 | |
Chain A, Mineralocorticoid receptor | Homo sapiens (human) | 0.049 | |
Estrogen receptor | Homo sapiens (human) | 5.702 | |
Glucocorticoid receptor | Homo sapiens (human) | 4.0745 | |
Progesterone receptor | Homo sapiens (human) | 1.675 | |
Glycine receptor subunit alpha-1 | Rattus norvegicus (Norway rat) | 1.9025 | |
Mineralocorticoid receptor | Homo sapiens (human) | 0.0315 | |
Androgen receptor | Homo sapiens (human) | 0.3585 | |
Androgen receptor | Rattus norvegicus (Norway rat) | 0.406 | |
Glycine receptor subunit beta | Rattus norvegicus (Norway rat) | 1.9025 | |
Glycine receptor subunit alpha-2 | Rattus norvegicus (Norway rat) | 1.9025 | |
Glycine receptor subunit alpha-3 | Rattus norvegicus (Norway rat) | 1.9025 | |
Sodium-dependent serotonin transporter | Rattus norvegicus (Norway rat) | 6.92 | |
Cytochrome P450 2C19 | Homo sapiens (human) | 3 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (28.57) | 29.6817 |
2010's | 5 (71.43) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Andricopulo, AD; Moda, TL; Montanari, CA | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Giacomini, KM; Huang, Y; Khuri, N; Kido, Y; Kosaka, A; Morrissey, KM; Sali, A; Wittwer, MB; Zhang, X; Zur, AA | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
1 review(s) available for levofloxacin and spironolactone
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
6 other study(ies) available for levofloxacin and spironolactone
Article | Year |
---|---|
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Hologram QSAR model for the prediction of human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Holography; Humans; Models, Biological; Models, Molecular; Molecular Structure; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2007 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling.
Topics: Computer Simulation; Fluorescent Dyes; Organic Cation Transport Proteins; Prescription Drugs | 2013 |