Page last updated: 2024-09-04

levofloxacin and rofecoxib

levofloxacin has been researched along with rofecoxib in 5 studies

Compound Research Comparison

Studies
(levofloxacin)
Trials
(levofloxacin)
Recent Studies (post-2010)
(levofloxacin)
Studies
(rofecoxib)
Trials
(rofecoxib)
Recent Studies (post-2010) (rofecoxib)
4,3465812,2091,914307163

Protein Interaction Comparison

ProteinTaxonomylevofloxacin (IC50)rofecoxib (IC50)
Prostaglandin G/H synthase 2 Bos taurus (cattle)0.43
Cytochrome c oxidase subunit 2Homo sapiens (human)1.51
Prostaglandin G/H synthase 1Ovis aries (sheep)0.5
Seed linoleate 13S-lipoxygenase-1Glycine max (soybean)0.5
Calpain-2 catalytic subunitHomo sapiens (human)0.02
Prostaglandin G/H synthase 1Homo sapiens (human)1.8
Prostaglandin G/H synthase 2Homo sapiens (human)0.3602
Prostaglandin G/H synthase 2 Rattus norvegicus (Norway rat)0.76
Prostaglandin G/H synthase 2Ovis aries (sheep)0.486
Prostaglandin G/H synthase 2Mus musculus (house mouse)0.036
Sodium-dependent serotonin transporterMacaca mulatta (Rhesus monkey)0.5

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (40.00)29.6817
2010's3 (60.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Andricopulo, AD; Moda, TL; Montanari, CA1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1

Other Studies

5 other study(ies) available for levofloxacin and rofecoxib

ArticleYear
Hologram QSAR model for the prediction of human oral bioavailability.
    Bioorganic & medicinal chemistry, 2007, Dec-15, Volume: 15, Issue:24

    Topics: Administration, Oral; Biological Availability; Holography; Humans; Models, Biological; Models, Molecular; Molecular Structure; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship

2007
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
    Toxicology mechanisms and methods, 2008, Volume: 18, Issue:2-3

    Topics:

2008
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013