levofloxacin has been researched along with netilmicin in 13 studies
Studies (levofloxacin) | Trials (levofloxacin) | Recent Studies (post-2010) (levofloxacin) | Studies (netilmicin) | Trials (netilmicin) | Recent Studies (post-2010) (netilmicin) |
---|---|---|---|---|---|
4,346 | 581 | 2,209 | 1,108 | 190 | 55 |
Protein | Taxonomy | levofloxacin (IC50) | netilmicin (IC50) |
---|---|---|---|
30S ribosomal protein S6 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S7 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L15 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L10 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L11 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L7/L12 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L19 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L1 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L20 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L27 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L28 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L29 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L31 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L31 type B | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L32 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L33 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L34 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L35 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L36 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S10 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S11 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S12 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S13 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S16 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S18 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S19 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S20 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S2 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S3 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S4 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S5 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S8 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S9 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L13 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L14 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L16 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L23 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S15 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L17 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L21 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L30 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L6 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S14 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S17 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S1 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L18 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L2 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L3 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L24 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L4 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L22 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L5 | Escherichia coli K-12 | 0.02 | |
30S ribosomal protein S21 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L25 | Escherichia coli K-12 | 0.02 | |
50S ribosomal protein L36 2 | Escherichia coli K-12 | 0.02 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 9 (69.23) | 29.6817 |
2010's | 4 (30.77) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Courvalin, P; Galimand, M; Périchon, B | 1 |
Castanheira, M; Jones, RN; Mendes, RE; Sader, HS; Toleman, MA; Walsh, TR | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Cattoir, V; Nordmann, P; Poirel, L | 1 |
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM | 1 |
Bai, N; Cai, Y; Li, R; Liang, B; Liu, Y; Wang, R | 1 |
Glen, RC; Lowe, R; Mitchell, JB | 1 |
Colino Gandarillas, CI; Lanao, JM; Sánchez Navarro, A; Santos Martínez Martínez, M | 1 |
Gandarillas, CI; Martínez Lanao, J; Martínez Martínez, MS; Sánchez Navarro, A | 1 |
Blanco, AR; Papa, V; Spoto, CG; Sudano Roccaro, A | 1 |
13 other study(ies) available for levofloxacin and netilmicin
Article | Year |
---|---|
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli.
Topics: Amino Acid Motifs; Amino Acid Sequence; Aminoglycosides; Anti-Bacterial Agents; Anti-Infective Agents; Conjugation, Genetic; Conserved Sequence; DNA, Bacterial; Drug Resistance, Multiple, Bacterial; Enterobacteriaceae; Escherichia coli; Escherichia coli Proteins; Fluoroquinolones; Genes, rRNA; Methylation; Methyltransferases; Microbial Sensitivity Tests; Molecular Sequence Data; Norfloxacin; Plasmids; Sequence Analysis, DNA; Sequence Homology, Amino Acid | 2007 |
Characterization of an integron carrying blaIMP-1 and a new aminoglycoside resistance gene, aac(6')-31, and its dissemination among genetically unrelated clinical isolates in a Brazilian hospital.
Topics: Acinetobacter; Amino Acid Sequence; Aminoglycosides; Anti-Bacterial Agents; Base Sequence; Brazil; Codon, Terminator; Cross Infection; Drug Resistance, Multiple, Bacterial; Gene Transfer, Horizontal; Genes, Bacterial; Hospitals; Humans; Integrons; Microbial Sensitivity Tests; Molecular Sequence Data; Open Reading Frames; Plasmids; Pseudomonas putida; Transcription, Genetic | 2007 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France.
Topics: Aged; Base Sequence; DNA Primers; DNA, Bacterial; Drug Resistance, Bacterial; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Female; Fluoroquinolones; France; Genes, Bacterial; Humans; Models, Genetic; Molecular Sequence Data; Plasmids | 2008 |
Physicochemical determinants of human renal clearance.
Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight | 2009 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
Topics: | 2008 |
In vitro antimicrobial activity and mutant prevention concentration of colistin against Acinetobacter baumannii.
Topics: Acinetobacter baumannii; Anti-Bacterial Agents; Colistin; Drug Resistance, Multiple, Bacterial; Microbial Sensitivity Tests; Mutation | 2010 |
Predicting phospholipidosis using machine learning.
Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine | 2010 |
Influence of flow rate on the disposition of levofloxacin and netilmicin in the isolated rat lung.
Topics: Animals; In Vitro Techniques; Levofloxacin; Lung; Male; Netilmicin; Ofloxacin; Perfusion; Rats; Rats, Wistar | 2005 |
Comparative study of the disposition of levofloxacin, netilmicin and cefepime in the isolated rat lung.
Topics: Animals; Anti-Bacterial Agents; Cefepime; Cephalosporins; Kinetics; Levofloxacin; Lung; Male; Netilmicin; Ofloxacin; Organ Culture Techniques; Rats; Rats, Wistar; Respiration, Artificial; Tissue Distribution | 2005 |
Susceptibility of methicillin-resistant Staphylococci clinical isolates to netilmicin and other antibiotics commonly used in ophthalmic therapy.
Topics: Anti-Bacterial Agents; Aza Compounds; Azithromycin; Chloramphenicol; Drug Resistance; Eye Infections, Bacterial; Fluoroquinolones; Humans; Levofloxacin; Methicillin-Resistant Staphylococcus aureus; Microbial Sensitivity Tests; Moxifloxacin; Netilmicin; Quinolines; Staphylococcus epidermidis; Tobramycin; Vancomycin | 2013 |