levodopa has been researched along with sr141716 in 8 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (37.50) | 29.6817 |
2010's | 5 (62.50) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Asbrock, N; Ferrer, B; Giuffrida, A; Kathuria, S; Piomelli, D | 1 |
Brotchie, JM; Crossman, AR; Di Marzo, V; Fox, SH; Hill, M; Petrosino, S; van der Stelt, M | 1 |
Cassin, J; Harris, O; Kelsey, JE | 1 |
Dowd, E; Finn, DP; Gorman, AM; Walsh, S | 1 |
di Marzo, V; Freestone, PS; Guatteo, E; Lipski, J; Mercuri, NB; Piscitelli, F | 1 |
Armentero, MT; Baqi, Y; Bonaventura, J; Canela, EI; Casadó, V; Cortés, A; Costa, G; Farré, D; Franco, R; Lanciego, JL; Lluís, C; Mallol, J; Martínez-Pinilla, E; McCormick, P; Müller, CE; Pinna, A; Sánchez, M; Simola, N | 1 |
8 other study(ies) available for levodopa and sr141716
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Effects of levodopa on endocannabinoid levels in rat basal ganglia: implications for the treatment of levodopa-induced dyskinesias.
Topics: Animals; Antiparkinson Agents; Basal Ganglia; Behavior, Animal; Benzazepines; Benzoxazines; Brain Chemistry; Cannabinoid Receptor Modulators; Chromatography, High Pressure Liquid; Disease Models, Animal; Dopamine Antagonists; Drug Interactions; Dyskinesia, Drug-Induced; Dyskinesias; Endocannabinoids; Gas Chromatography-Mass Spectrometry; Levodopa; Male; Morpholines; Mouth; Naphthalenes; Oxidopamine; Parkinson Disease; Piperidines; Pyrazoles; Raclopride; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Rimonabant; Substantia Nigra; Time Factors | 2003 |
A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson's disease.
Topics: Animals; Arachidonic Acids; Callithrix; Cannabinoid Receptor Modulators; Dyskinesia, Drug-Induced; Endocannabinoids; Female; gamma-Aminobutyric Acid; Glycerides; Levodopa; Male; MPTP Poisoning; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant | 2005 |
The CB(1) antagonist rimonabant is adjunctively therapeutic as well as monotherapeutic in an animal model of Parkinson's disease.
Topics: Animals; Corpus Striatum; Disease Models, Animal; Hypokinesia; Levodopa; Male; Motor Activity; Oxidopamine; Parkinson Disease; Piperidines; Pyrazoles; Rats; Rats, Long-Evans; Receptor, Cannabinoid, CB1; Rimonabant | 2009 |
The effects of cannabinoid drugs on abnormal involuntary movements in dyskinetic and non-dyskinetic 6-hydroxydopamine lesioned rats.
Topics: Animals; Antiparkinson Agents; Disease Models, Animal; Dronabinol; Dyskinesia, Drug-Induced; Levodopa; Male; Parkinsonian Disorders; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Rimonabant | 2010 |
Glutamate spillover drives endocannabinoid production and inhibits GABAergic transmission in the Substantia Nigra pars compacta.
Topics: Animals; Arachidonic Acids; Benzofurans; Calcium; Cannabinoid Receptor Antagonists; Central Nervous System Agents; Dopamine; Dopamine Agents; Dopaminergic Neurons; Endocannabinoids; Glutamic Acid; Guanosine Diphosphate; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Levodopa; Neurons; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptors, Metabotropic Glutamate; Rimonabant; Substantia Nigra; Synaptic Transmission; Thionucleotides | 2014 |
L-DOPA disrupts adenosine A(2A)-cannabinoid CB(1)-dopamine D(2) receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: biochemical and behavioral studies.
Topics: Adenosine A2 Receptor Antagonists; Animals; Antiparkinson Agents; Cannabinoid Receptor Antagonists; Cholinesterase Inhibitors; Corpus Striatum; Disease Models, Animal; Dopamine Agents; Dose-Response Relationship, Drug; Drug Interactions; Functional Laterality; Levodopa; Male; Oxidopamine; Parkinsonian Disorders; Piperidines; Protein Binding; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor Cross-Talk; Rimonabant; Tacrine; Time Factors; Tremor | 2014 |