Page last updated: 2024-08-17

levodopa and pyruvic acid

levodopa has been researched along with pyruvic acid in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (20.00)18.2507
2000's3 (60.00)29.6817
2010's0 (0.00)24.3611
2020's1 (20.00)2.80

Authors

AuthorsStudies
Cha, SH; Chairoungdua, A; Endou, H; Kanai, Y; Kim, DK; Matsuo, H1
Cha, SH; Chairoungdua, A; Endou, H; Enomoto, A; Goya, T; Kanai, Y; Kim, DK; Kim, JY; Kobayashi, Y; Matsuo, H1
Cohen, G; Mytilineou, C; Werner, P; Yahr, MD1
Bryla, J; Chodnicka, K; Doroszewska, R; Drozak, J; Winiarska, K1
Sun, J; Wang, Z; Xiao, Y; Yuan, W; Zhong, S1

Other Studies

5 other study(ies) available for levodopa and pyruvic acid

ArticleYear
Expression cloning of a Na+-independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters.
    The Journal of biological chemistry, 2001, May-18, Volume: 276, Issue:20

    Topics: Amino Acid Sequence; Amino Acid Transport Systems; Amino Acid Transport Systems, Neutral; Animals; Anion Transport Proteins; Bacterial Proteins; Carrier Proteins; Cloning, Molecular; Escherichia coli Proteins; Female; Intestine, Small; Kinetics; Levodopa; Mice; Molecular Sequence Data; Oocytes; Phenylalanine; Rats; Recombinant Proteins; Sequence Alignment; Sequence Homology, Amino Acid; Substrate Specificity; Tryptophan; Tyrosine; Xenopus laevis

2001
The human T-type amino acid transporter-1: characterization, gene organization, and chromosomal location.
    Genomics, 2002, Volume: 79, Issue:1

    Topics: Amino Acid Sequence; Amino Acid Transport Systems, Neutral; Animals; Carrier Proteins; Chromosome Mapping; Chromosomes, Human, Pair 6; Humans; Molecular Sequence Data; Oocytes; Rats; Sequence Analysis, DNA; Sequence Homology; Xenopus laevis

2002
Impaired oxidation of pyruvate in human embryonic fibroblasts after exposure to L-dopa.
    European journal of pharmacology, 1994, Sep-22, Volume: 263, Issue:1-2

    Topics: Ascorbic Acid; Cells, Cultured; Fetus; Fibroblasts; Humans; Levodopa; Mitochondria; Oxidation-Reduction; Oxidative Phosphorylation; Pyruvates; Pyruvic Acid; Radiation-Protective Agents; Succinates; Succinic Acid

1994
Contribution of L-3,4-dihydroxyphenylalanine metabolism to the inhibition of gluconeogenesis in rabbit kidney-cortex tubules.
    The international journal of biochemistry & cell biology, 2005, Volume: 37, Issue:6

    Topics: Alanine; Animals; Aspartic Acid; Caprylates; Depression, Chemical; Dihydroxyacetone; Dopamine; Gluconeogenesis; Glutathione; Glutathione Disulfide; Glycerol; Hydrogen Peroxide; In Vitro Techniques; Kidney Tubules; Levodopa; Male; Phosphoenolpyruvate Carboxykinase (GTP); Pyruvic Acid; Rabbits; Selegiline; Tyramine

2005
Efficient biocatalyst of L-DOPA with Escherichia coli expressing a tyrosine phenol-lyase mutant from Kluyvera intermedia.
    Applied biochemistry and biotechnology, 2020, Volume: 190, Issue:4

    Topics: Acetates; Biocatalysis; Catechols; Cloning, Molecular; Escherichia coli; Hydrogen-Ion Concentration; Kluyvera; Levodopa; Mutagenesis; Mutation; Pyridoxal Phosphate; Pyruvic Acid; Sodium; Temperature; Tyrosine Phenol-Lyase

2020