levetiracetam and eslicarbazepine

levetiracetam has been researched along with eslicarbazepine* in 4 studies

Reviews

3 review(s) available for levetiracetam and eslicarbazepine

ArticleYear
Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy?
    Epilepsia, 2020, Volume: 61, Issue:3

    Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecu

    Topics: Acetylcysteine; Animals; Anticonvulsants; Antioxidants; Atorvastatin; Brain Injuries, Traumatic; Ceftriaxone; Dibenzazepines; Drug Repositioning; Epilepsy; Epilepsy, Post-Traumatic; Erythropoietin; Fingolimod Hydrochloride; GABA Agents; Gabapentin; Humans; Immunologic Factors; Inflammation; Interleukin 1 Receptor Antagonist Protein; Isoflurane; Levetiracetam; Losartan; Neuroprotective Agents; Oxidative Stress; Pregabalin; Pyrrolidinones; Sirolimus; Stroke; Topiramate; Translational Research, Biomedical; Vigabatrin

2020
Mechanisms of epileptogenesis and preclinical approach to antiepileptogenic therapies.
    Pharmacological reports : PR, 2018, Volume: 70, Issue:2

    The prevalence of epilepsy is estimated 5-10 per 1000 population and around 70% of patients with epilepsy can be sufficiently controlled by antiepileptic drugs (AEDs). Epileptogenesis is the process responsible for converting normal into an epileptic brain and mechanisms responsible include among others: inflammation, neurodegeneration, neurogenesis, neural reorganization and plasticity. Some AEDs may be antiepileptiogenic (diazepam, eslicarbazepine) but the correlation between neuroprotection and inhibition of epileptogenesis is not evident. Antiepileptogenic activity has been postulated for mTOR ligands, resveratrol and losartan. So far, clinical evidence gives some hope for levetiracetam as an AED inhibiting epileptogenesis in neurosurgical patients. Biomarkers for epileptogenesis are needed for the proper selection of patients for evaluation of potential antiepileptogenic compounds.

    Topics: Animals; Anticonvulsants; Biomarkers; Brain; Dibenzazepines; Epilepsy; Humans; Levetiracetam; Piracetam

2018
Perspectives on treatment options for mesial temporal lobe epilepsy with hippocampal sclerosis.
    Expert opinion on pharmacotherapy, 2015, Volume: 16, Issue:15

    Mesial temporal lobe epilepsy associated with hippocampal sclerosis (MTLE-HS) is a syndrome that is often refractory to drug treatment. The effects on specific syndromes are not currently available from the pre-marketing clinical development of new AEDs; this does not allow the prediction of whether new drugs will be more effective in the treatment of some patients.. We have reviewed all the existing literature relevant to the understanding of a potential effectiveness in MTLE-HS patients for the latest AEDs, namely brivaracetam, eslicarbazepine, lacosamide, perampanel and retigabine also including the most relevant clinical data and a brief description of their pharmacological profile. Records were identified using predefined search criteria using electronic databases (e.g., PubMed, Cochrane Library Database of Systematic Reviews). Primary peer-reviewed articles published up to the 15 June 2015 were included.. All the drugs considered have the potential to be effective in the treatment of MTLE-HS; in fact, they possess proven efficacy in animal models; currently considered valuable tools for predicting drug efficacy in TLE. Furthermore, for some of these (e.g., lacosamide and eslicarbazepine) data are already available from post-marketing studies while brivaracetam acting on SV2A like levetiracetam might have the same potential effectiveness with the possibility to be more efficacious considering its ability to inhibit voltage gated sodium channels; finally, perampanel and retigabine are very effective drugs in animal models of TLE.

    Topics: Acetamides; Anticonvulsants; Carbamates; Clinical Trials as Topic; Dibenzazepines; Epilepsy, Temporal Lobe; Hippocampus; Humans; Lacosamide; Levetiracetam; Nitriles; Phenylenediamines; Piracetam; Pyridones; Sclerosis; Syndrome

2015

Other Studies

1 other study(ies) available for levetiracetam and eslicarbazepine

ArticleYear
Effects of carbamazepine, eslicarbazepine, valproic acid and levetiracetam on bone microarchitecture in rats.
    Pharmacological reports : PR, 2020, Volume: 72, Issue:5

    Metabolic bone disease and fractures are a great problem for patients with epilepsy. The use of antiepileptic drugs (AEDs) is known to play an essential role in the progression of bone loss by various pathophysiological mechanisms. The aim of this study was to evaluate the effects of AEDs on bone microstructure as an additional cause of an increased fracture risk in patients with epilepsy.. Five groups of each of 12 female rats were orally dosed daily for 8 weeks with either carbamazepine (CBZ) (60 mg/kg), eslicarbazepine (ESL) (80 mg/kg), valproic acid (VPA) (300 mg/kg), levetiracetam (LEV) (50 mg/kg) or saline (control (CTL)). Following killing, dissected femurs were analyzed using X-ray micro-computed tomography (µCT), dual-energy X-ray absorptiometry (DXA) and biomechanical testing. In addition, serum bone turnover markers (BTM) were monitored throughout the experiment.. Compared to CTL treatment, VPA decreased bone volume fraction by 19%, decreased apparent density by 14% and increased structural model index by 41%. No changes were observed in bone biomechanics nor mineral density evaluated by DXA or in levels of BTM.. Our findings suggest that VPA affects the microarchitectural properties of the bone. The AEDs CBZ, ESL and LEV appear to have less adverse effects on bone biology and may be a better choice when treating patients with respect to bone health.

    Topics: Animals; Anticonvulsants; Bone and Bones; Carbamazepine; Dibenzazepines; Disease Models, Animal; Epilepsy; Female; Levetiracetam; Rats; Rats, Sprague-Dawley; Valproic Acid; X-Ray Microtomography

2020