leupeptins and salubrinal

leupeptins has been researched along with salubrinal* in 3 studies

Other Studies

3 other study(ies) available for leupeptins and salubrinal

ArticleYear
Induction of autophagy by the MG‑132 proteasome inhibitor is associated with endoplasmic reticulum stress in MCF‑7 cells.
    Molecular medicine reports, 2016, Volume: 13, Issue:1

    The aim of the present study was to investigate whether endoplasmic reticulum (ER) stress is involved in MG‑132‑induced autophagy, and to determine the effects of the inhibition of autophagy and ER stress on cell viability following MG‑132 treatment. The proteasome inhibitor, MG‑132, was used to induce autophagy in MCF‑7 cells, and 3‑methyladenine (3‑MA) and salubrinal were used to inhibit autophagy and ER stress, respectively. An MTT assay was used to analyze cell viability. Apoptosis and the cell cycle were analyzed using flow cytometry. The expression levels of apoptosis‑ and ER stress‑associated genes were investigated using western blot and reverse transcription‑quantitative polymerase chain reaction analyses. MG‑132 inhibited cell proliferation, and induced apoptosis and cell cycle arrest at the G2 phase of the cell cycle. Notably, MG‑132 increased the autophagy‑associated conversion of microtubule‑associated protein 1 light chain 3 (LC3)‑I to LC3‑II, which was partially attenuated by the ER stress inhibitor, salubrinal. In addition, MG‑132 inhibited the protein expression of the anti‑apoptotic protein, B‑cell lymphoma (Bcl)‑2, whereas the expression levels of Bcl‑2‑associated X protein and caspase‑3 were upregulated. These effects were enhanced by co‑treatment with either 3‑MA or salubrinal. Furthermore, the mRNA and protein levels of the ER stress‑associated genes, glucose‑regulated protein 78, growth arrest and DNA damage induced gene‑153, and caspase‑12, were upregulated by MG132, and these levels were significantly inhibited by co‑treatment of the cells with salubrinal. Taken together, the results of the present study indicated that the induction of autophagy by the proteasome inhibitor was associated with ER stress in the MCF‑7 cells, and that the inhibition of autophagy or ER stress enhanced MG‑132‑induced apoptosis. These findings suggest the potential application of inhibitors of ER stress and autophagy, in combination with proteasomal inhibitors, for the development of combinatorial targeted cancer therapy.

    Topics: Adenine; Apoptosis; Autophagy; Cinnamates; Drug Synergism; Endoplasmic Reticulum Stress; Humans; Leupeptins; MCF-7 Cells; Proteasome Inhibitors; Thiourea

2016
Carnosic acid promotes degradation of the androgen receptor and is regulated by the unfolded protein response pathway in vitro and in vivo.
    Carcinogenesis, 2016, Volume: 37, Issue:8

    Androgen deprivation therapy in prostate cancer is extremely effective; however, due to the continuous expression and/or mutagenesis of androgen receptor (AR), the resistance to antihormonal therapy is a natural progression. Consequently, targeting the AR for degradation offers an alternate approach to overcome this resistance in prostate cancer. In this study, we demonstrate that carnosic acid, a benzenediol diterpene, binds the ligand-binding domain of the AR and degrades the AR via endoplasmic reticulum (ER) stress-mediated proteasomal degradative pathway. In vitro, carnosic acid treatment induced degradation of AR and decreased expression of prostate-specific antigen in human prostate cancer cell lines LNCaP and 22Rv1. Carnosic acid also promoted the expression of ER proteins including BiP and CHOP in a dose-dependent manner. Downregulation of CHOP by small interfering RNA somewhat restored expression of AR suggesting that AR degradation is dependent on ER stress pathway. Future studies will need to evaluate other aspects of the unfolded protein response pathway to characterize the regulation of AR degradation. Furthermore, cotreating cells individually with carnosic acid and proteasome inhibitor (MG-132) and carnosic acid and an ER stress modulator (salubrinal) restored protein levels of AR, suggesting that AR degradation is mediated by ER stress-dependent proteasomal degradation pathway. Degradation of AR and induction of CHOP protein were also evident in vivo along with a 53% reduction in growth of xenograft prostate cancer tumors. In addition, carnosic acid-induced ER stress in prostate cancer cells but not in normal prostate epithelial cells procured from patient biopsies. In conclusion, these data suggest that molecules such as carnosic acid could be further evaluated and optimized as a potential therapeutic alternative to target AR in prostate cancer.

    Topics: Abietanes; Animals; Apoptosis; Cell Line, Tumor; Cell Proliferation; Cinnamates; Endoplasmic Reticulum Stress; Gene Expression Regulation, Neoplastic; Humans; Leupeptins; Male; Mice; Prostate-Specific Antigen; Prostatic Neoplasms; Proteolysis; Receptors, Androgen; Thiourea; Transcription Factor CHOP; Unfolded Protein Response; Xenograft Model Antitumor Assays

2016
Curcumin prevents replication of respiratory syncytial virus and the epithelial responses to it in human nasal epithelial cells.
    PloS one, 2013, Volume: 8, Issue:9

    The human nasal epithelium is the first line of defense during respiratory virus infection. Respiratory syncytial virus (RSV) is the major cause of bronchitis, asthma and severe lower respiratory tract disease in infants and young children. We previously reported in human nasal epithelial cells (HNECs), the replication and budding of RSV and the epithelial responses, including release of proinflammatory cytokines and enhancement of the tight junctions, are in part regulated via an NF-κB pathway. In this study, we investigated the effects of the NF-κB in HNECs infected with RSV. Curcumin prevented the replication and budding of RSV and the epithelial responses to it without cytotoxicity. Furthermore, the upregulation of the epithelial barrier function caused by infection with RSV was enhanced by curcumin. Curcumin also has wide pharmacokinetic effects as an inhibitor of NF-κB, eIF-2α dephosphorylation, proteasome and COX2. RSV-infected HNECs were treated with the eIF-2α dephosphorylation blocker salubrinal and the proteasome inhibitor MG132, and inhibitors of COX1 and COX2. Treatment with salubrinal, MG132 and COX2 inhibitor, like curcumin, prevented the replication of RSV and the epithelial responses, and treatment with salubrinal and MG132 enhanced the upregulation of tight junction molecules induced by infection with RSV. These results suggest that curcumin can prevent the replication of RSV and the epithelial responses to it without cytotoxicity and may act as therapy for severe lower respiratory tract disease in infants and young children caused by RSV infection.

    Topics: Anti-Inflammatory Agents, Non-Steroidal; Child, Preschool; Cinnamates; Curcumin; Cyclooxygenase 1; Cyclooxygenase 2; Enzyme Inhibitors; Epithelial Cells; Eukaryotic Initiation Factor-2; Gene Expression Profiling; Gene Expression Regulation; Humans; Infant; Leupeptins; Nasal Mucosa; NF-kappa B; Oligonucleotide Array Sequence Analysis; Primary Cell Culture; Proteasome Endopeptidase Complex; Respiratory Syncytial Virus, Human; Signal Transduction; Thiourea; Virus Release; Virus Replication

2013