leupeptins has been researched along with pyrazolanthrone* in 11 studies
11 other study(ies) available for leupeptins and pyrazolanthrone
Article | Year |
---|---|
ERK and p38 MAPK inhibition controls NF-E2 degradation and profibrotic signaling in renal proximal tubule cells.
Transforming growth factor-β (TGF-β) mediates fibrotic manifestations of diabetic nephropathy. We demonstrated proteasomal degradation of anti-fibrotic protein, nuclear factor-erythroid derived 2 (NF-E2), in TGF-β treated human renal proximal tubule (HK-11) cells and in diabetic mouse kidneys. The current study examined the role of mitogen-activated protein kinase (MAPK) pathways in mediating NF-E2 proteasomal degradation and stimulating profibrotic signaling in HK-11 cells.. HK-11 cells were pretreated with vehicle or appropriate proteasome and MAPK inhibitors, MG132 (0.5 μM), SB203580 (1 μM), PD98059 (25 μM) and SP600125 (10 μM), respectively, followed by treatment with/without TGF-β (10 ng/ml, 24 h). Cell lysates and kidney homogenates from FVB and OVE26 mice treated with/without MG132 were immunoblotted with appropriate antibodies. pUse vector and pUse-NF-E2 cDNA were transfected in HK-11 cells and effects of TGF-β on JNK MAPK phosphorylation (pJNK) was examined.. We demonstrated activation of p38, ERK, and JNK MAPK pathways in TGF-β treated HK-11 cells. Dual p38 and ERK MAPK blockade prevented TGF-β-induced pSer. ERK and p38 MAPK promotes NF-E2 proteasomal degradation while proteasome activation promotes pJNK and profibrotic signaling in renal proximal tubule cells. Topics: Animals; Anthracenes; Cell Line, Transformed; Cysteine Proteinase Inhibitors; Female; Fibrosis; Humans; Kidney Tubules, Proximal; Leupeptins; MAP Kinase Signaling System; Mice; Mice, Transgenic; NF-E2 Transcription Factor, p45 Subunit; p38 Mitogen-Activated Protein Kinases | 2021 |
Lipopolysaccharide induces degradation of connexin43 in rat astrocytes via the ubiquitin-proteasome proteolytic pathway.
The astrocytic syncytium plays a critical role in maintaining the homeostasis of the brain through the regulation of gap junction intercellular communication (GJIC). Changes to GJIC in response to inflammatory stimuli in astrocytes may have serious effects on the brain. We have previously shown that lipopolysaccharide (LPS) reduces connexin43 (Cx43) expression and GJIC in cultured rat astrocytes via a toll-like receptor 4-mediated signaling pathway. In the present study, treatment of astrocytes with LPS resulted in a significant increase in levels of the phosphorylated forms of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) -1, -2, and -3 for up to 18 h. An increase in nuclear transcription factor NF-κB levels was also observed after 8 h of LPS treatment and was sustained for up to 18 h. The LPS-induced decrease in Cx43 protein levels and inhibition of GJIC were blocked by the SAPK/JNK inhibitor SP600125, but not by the NF-κB inhibitor BAY11-7082. Following blockade of de novo protein synthesis by cycloheximide, LPS accelerated Cx43 degradation. Moreover, the LPS-induced downregulation of Cx43 was blocked following inhibition of 26S proteasome activity using the reversible proteasome inhibitor MG132 or the irreversible proteasome inhibitor lactacystin. Immunoprecipitation analyses revealed an increased association of Cx43 with both ubiquitin and E3 ubiquitin ligase Nedd4 in astrocytes after LPS stimulation for 6 h and this effect was prevented by SP600125. Taken together, these results suggest that LPS stimulation leads to downregulation of Cx43 expression and GJIC in rat astrocytes by activation of SAPK/JNK and the ubiquitin-proteasome proteolytic pathway. Topics: Acetylcysteine; Animals; Anthracenes; Astrocytes; Connexin 43; Down-Regulation; Gap Junctions; JNK Mitogen-Activated Protein Kinases; Leupeptins; Lipopolysaccharides; NF-kappa B; Proteasome Endopeptidase Complex; Proteolysis; Rats; Signal Transduction; Ubiquitination; Ubiquitins | 2013 |
CD99 ligation induces intercellular cell adhesion molecule-1 expression and secretion in human gingival fibroblasts.
To examine CD99 expression and its functional role in ICAM-1 induction in human gingival fibroblasts (HGFs) and human gingival epithelial cells (HGECs) by activating cells with anti-CD99 monoclonal antibody, MT99/3.. Engagement of CD99 with agonistic antibodies has been shown to regulate immune responses, cell adhesion and migration, and cell death in several studies. Particularly, this engagement results in transendothelial migration of leukocytes mediated by intercellular adhesion molecule-1 (ICAM-1) induction in endothelial cells.. Total mRNA and protein were isolated from HGFs and HGECs for analyses of CD99 and ICAM-1 expression. Surface expression of CD99 and ICAM-1 was analysed by flow cytometry, and the detection of soluble ICAM-1 was assayed by immunoprecipitation and ELISA.. CD99 surface expression was constitutive on HGFs to a greater extent than that on HGECs. CD99 ligation with MT99/3 induced ICAM-1 mRNA expression in HGFs, but not in HGECs. Interestingly, CD99 ligation led to an increased level of soluble ICAM-1 detected in culture supernatant, whereas interleukin-1β (IL-1β) treatment induced expression of membrane-bound ICAM-1. Furthermore, ICAM-1 induction by CD99 engagement was demonstrated to involve the activation of the p50 subunit of nuclear factor-kappaB (NF-κB), extracellular signal-regulated kinase, and p46 c-Jun N-terminal kinase that differed from that by IL-1β treatment.. Our study has shown the involvement of CD99 ligation in the up-regulation of ICAM-1 expression and its secretion in gingival fibroblasts, which may be essential for better understanding of the pathogenesis of periodontal disease. Topics: 12E7 Antigen; Anthracenes; Antibodies, Monoclonal; Antigens, CD; Butadienes; Cell Adhesion Molecules; Cell Movement; Cells, Cultured; Culture Media, Conditioned; Endothelial Cells; Enzyme Inhibitors; Epithelial Cells; Extracellular Signal-Regulated MAP Kinases; Fibroblasts; Flow Cytometry; Gingiva; Humans; Imidazoles; Intercellular Adhesion Molecule-1; Interleukin-1beta; JNK Mitogen-Activated Protein Kinases; Jurkat Cells; Leukocytes; Leupeptins; MAP Kinase Signaling System; NF-kappa B; NF-kappa B p50 Subunit; Nitriles; p38 Mitogen-Activated Protein Kinases; Pyridines | 2013 |
Inducible nitric-oxide synthase and nitric oxide donor decrease insulin receptor substrate-2 protein expression by promoting proteasome-dependent degradation in pancreatic beta-cells: involvement of glycogen synthase kinase-3beta.
Insulin receptor substrate-2 (IRS-2) plays a critical role in the survival and function of pancreatic β-cells. Gene disruption of IRS-2 results in failure of the β-cell compensatory mechanism and diabetes. Nonetheless, the regulation of IRS-2 protein expression in β-cells remains largely unknown. Inducible nitric-oxide synthase (iNOS), a major mediator of inflammation, has been implicated in β-cell damage in type 1 and type 2 diabetes. The effects of iNOS on IRS-2 expression have not yet been investigated in β-cells. Here, we show that iNOS and NO donor decreased IRS-2 protein expression in INS-1/832 insulinoma cells and mouse islets, whereas IRS-2 mRNA levels were not altered. Interleukin-1β (IL-1β), alone or in combination with interferon-γ (IFN-γ), reduced IRS-2 protein expression in an iNOS-dependent manner without altering IRS-2 mRNA levels. Proteasome inhibitors, MG132 and lactacystin, blocked the NO donor-induced reduction in IRS-2 protein expression. Treatment with NO donor led to activation of glycogen synthase kinase-3β (GSK-3β) and c-Jun N-terminal kinase (JNK/SAPK) in β-cells. Inhibition of GSK-3β by pharmacological inhibitors or siRNA-mediated knockdown significantly prevented NO donor-induced reduction in IRS-2 expression in β-cells. In contrast, a JNK inhibitor, SP600125, did not effectively block reduced IRS-2 expression in NO donor-treated β-cells. These data indicate that iNOS-derived NO reduces IRS-2 expression by promoting protein degradation, at least in part, through a GSK-3β-dependent mechanism. Our findings suggest that iNOS-mediated decreased IRS-2 expression may contribute to the progression and/or exacerbation of β-cell failure in diabetes. Topics: Acetylcysteine; Animals; Anthracenes; Cell Line, Tumor; Cysteine Proteinase Inhibitors; Enzyme Activation; Gene Expression Regulation; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Insulin Receptor Substrate Proteins; Insulin-Secreting Cells; Interferon-gamma; Interleukin-1beta; JNK Mitogen-Activated Protein Kinases; Leupeptins; Mice; Nitric Oxide Donors; Nitric Oxide Synthase Type II; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Rats | 2011 |
Inhibition of the JNK signalling pathway enhances proteasome inhibitor-induced apoptosis of kidney cancer cells by suppression of BAG3 expression.
Proteasome inhibitors represent a novel class of anti-tumour agents that have clinical efficacy against haematological and solid cancers. The anti-apoptotic protein BAG3 is a member of the Bcl-2-associated athanogene family. We have previously shown that BAG3 is up-regulated after exposure to proteasome inhibitors and that inhibition of BAG3 sensitized cells to apoptosis induced by proteasome inhibition. However, the mechanisms by which proteasome inhibition induced BAG3 expression remained unclear and the present experiments were designed to elucidate these mechanisms.. Effects of the proteasome inhibitor MG132 on activation of mitogenic signalling pathways were evaluated in kidney cancer cells (A498, Caki1, Caki2), with Western blotting. Specific inhibitors against individual mitogenic signalling pathways, real-time reverse transcription-polymerase chain reaction and luciferase reporter assays were used to investigate the roles of mitogenic signalling pathways in BAG3 induction after proteasome inhibition. Cell death was evaluated using Annexin V/propidium iodide staining and subsequent FACS.. MG132 activated several key mitogenic signalling pathways including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activities. Induction of BAG3 by MG132 was inhibited by blocking JNK, but not ERK1/2 and p38 MAPK signalling pathways. In addition, SP600125 and dominant-negative JNK1 suppressed BAG3 promoter-driven reporter gene expression. Furthermore, activation of the JNK pathway induced BAG in kidney cancer cells after treatment with MG132.. Our results suggested that the JNK pathway was associated with the protective response against proteasome inhibition, by mediating induction of BAG3. Topics: Adaptor Proteins, Signal Transducing; Anthracenes; Apoptosis; Apoptosis Regulatory Proteins; Cell Line, Tumor; Extracellular Signal-Regulated MAP Kinases; Flavonoids; Humans; Imidazoles; JNK Mitogen-Activated Protein Kinases; Kidney Neoplasms; Leupeptins; Mitogen-Activated Protein Kinase 8; p38 Mitogen-Activated Protein Kinases; Proteasome Inhibitors; Pyridines; Signal Transduction | 2009 |
Involvement of mitogen-activated protein kinases and NFkappaB in LPS-induced CD40 expression on human monocytic cells.
CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NFkappaB were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NFkappaB activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NFkappaB activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NFkappaB activation, and CD40 expression. Moreover, blockage of MAPK and NFkappaB activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NFkappaB. Topics: Animals; Anthracenes; Butadienes; CD40 Antigens; Cell Line; Cell Line, Tumor; Dose-Response Relationship, Drug; Electrophoretic Mobility Shift Assay; Flow Cytometry; Humans; Imidazoles; Immunoblotting; Leupeptins; Mitogen-Activated Protein Kinases; Monocytes; NF-kappa B; Nitriles; Phosphorylation; Polysaccharides, Bacterial; Protein Kinase Inhibitors; Pyridines; Signal Transduction; Sulfones; Time Factors; Toll-Like Receptor 4 | 2008 |
House dust mite induces expression of intercellular adhesion molecule-1 in EoL-1 human eosinophilic leukemic cells.
The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF-kappaB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF-kappaB and JNK. Topics: Animals; Anthracenes; CD11b Antigen; Cell Line, Tumor; Cell Membrane; Eosinophils; Flow Cytometry; Gene Expression Regulation; Humans; Integrin alpha4; Intercellular Adhesion Molecule-1; Leukemia; Leupeptins; Mitogen-Activated Protein Kinase 8; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Pyroglyphidae | 2007 |
Proteasome blockade exerts an antifibrotic activity by coordinately down-regulating type I collagen and tissue inhibitor of metalloproteinase-1 and up-regulating metalloproteinase-1 production in human dermal fibroblasts.
Tissue fibrosis results when dysregulation of extracellular matrix (ECM) turnover favors deposition of collagen and other ECM proteins over degradation. Fibrosis may then lead to organ dysfunction and pathology as observed in systemic sclerosis (SSc). In the present study, we investigated the antifibrotic properties of proteasome blockade. A dose- and time-dependent reduction in type-I collagen and tissue inhibitor of metalloproteinase-1 (TIMP-1) production was observed in normal fibroblasts exposed to proteasome inhibitors (PI). In the same culture conditions, metalloproteinase-1 (MMP-1) protein and the collagenolytic activity on type I collagen was increased. The steady-state mRNA levels of COL1A1, TIMP-1, and MMP-1 paralleled protein levels. These effects were dominant over the profibrotic properties of TGF-beta and were observed with fibroblasts generated from normal and SSc skin. PI decreased type I collagen mRNA levels with kinetics similar to those observed with DRB, a specific RNA polymerase II inhibitor, thus indicating transcriptional inhibition. Of interest, PI induced c-Jun phosphorylation and c-Jun nuclear accumulation. The specific N-terminal Jun-kinase inhibitor SP-600125 selectively abrogated c-Jun phosphorylation and, in a dose-dependent fashion, the up-regulated synthesis of MMP-1 induced by PI. Finally, PI did not affect fibroblast viability. Thus, the coordinated down-regulation of collagen and TIMP-1 and up-regulation of MMP-1 renders proteasome blockade an attractive strategy for treating conditions as SSc, characterized by excessive fibrosis. Topics: Acetylcysteine; Anthracenes; Boronic Acids; Bortezomib; Collagen Type I; Dose-Response Relationship, Drug; Down-Regulation; Extracellular Matrix; Fibroblasts; Fibrosis; Genes, jun; Humans; JNK Mitogen-Activated Protein Kinases; Leupeptins; Matrix Metalloproteinase 1; Phosphorylation; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Processing, Post-Translational; Proto-Oncogene Proteins c-jun; Pyrazines; RNA Polymerase II; RNA, Messenger; Scleroderma, Systemic; Skin; Tissue Inhibitor of Metalloproteinase-1; Transforming Growth Factor beta; Up-Regulation | 2006 |
Disruption of microtubules leads to glucocorticoid receptor degradation in HeLa cell line.
The role of microtubules (MTs) in steroid hormone-dependent human glucocorticoid receptor (hGR) activation/translocation is controversial. It was demonstrated recently that colchicine (COL) down-regulates hGR-driven genes in primary human hepatocytes by a mechanism involving inhibition of hGR translocation to the nucleus. To investigate whether inhibition of hGR translocation is the sole reason for its inactivation, we used human cervical carcinoma cells (HeLa) as a model. Herein we present evidence that perturbation of microtubules in HeLa cells leads to rapid time- and dose-dependent degradation of hGR protein. Degradation is proteasome mediated as revealed by its reversibility by proteasome inhibitor MG132. Moreover, degradation was observed for neither wt-hGR nor hGR mutants S226A and K419A in transiently transfected COS-1 cells. On the other hand, c-jun N-terminal kinase (JNK) seems not to be involved in the process because JNK inhibitor 1,9-Pyrazoloanthrone (SP600125) does not reverse hGR degradation. Similarly, another hGR functional antagonist, nuclear factor kappa beta (NFkappaB), did not play any role in the degradation process. Topics: Animals; Anthracenes; Chlorocebus aethiops; Colchicine; COS Cells; Cysteine Proteinase Inhibitors; Cytosol; Dexamethasone; Enzyme Inhibitors; HeLa Cells; Humans; Intranuclear Space; JNK Mitogen-Activated Protein Kinases; Leupeptins; Microtubules; Mutation; NF-kappa B; Nocodazole; Proteasome Endopeptidase Complex; Protein Transport; Receptors, Glucocorticoid; Transfection; Ubiquitin; Vincristine | 2005 |
Lipopolysaccharide and proinflammatory cytokines stimulate interleukin-6 expression in C2C12 myoblasts: role of the Jun NH2-terminal kinase.
IL-6 is a major inflammatory cytokine that plays a central role in coordinating the acute-phase response to trauma, injury, and infection in vivo. Although IL-6 is synthesized predominantly by macrophages and lymphocytes, skeletal muscle is a newly recognized source of this cytokine. IL-6 from muscle spills into the circulation, and blood-borne IL-6 can be elevated >100-fold due to exercise and injury. The purpose of the present study was to determine whether inflammatory stimuli, such as LPS, TNF-alpha, and IL-1beta, could increase IL-6 expression in skeletal muscle and C2C12 myoblasts. Second, we investigated the role of mitogen-activated protein (MAP) kinases, and the Jun NH2-terminal kinase (JNK) in particular, as a mediator of this response. Intraperitoneal injection of LPS in mice increased the circulating concentration of IL-6 from undetectable levels to 4 ng/ml. LPS also increased IL-6 mRNA 100-fold in mouse fast-twitch skeletal muscle. Addition of LPS, IL-1beta, or TNF-alpha directly to C2C12 myoblasts increased IL-6 protein (6- to 8-fold) and IL-6 mRNA (5- to 10-fold). The response to all three stimuli was completely blocked by the JNK inhibitor SP-600125 but not as effectively by other MAP kinase inhibitors. SP-600125 blocked LPS-stimulated IL-6 synthesis dose dependently at both the RNA and protein level. SP-600125 was as effective as the synthetic glucocorticoid dexamethasone at inhibiting IL-6 expression. SP-600125 inhibited IL-6 synthesis when added to cells up to 60 min after LPS stimulation, but its inhibitory effect waned with time. LPS stimulated IL-6 mRNA in both myoblasts and myotubes, but myoblasts showed a proportionally greater LPS-induced increase in IL-6 protein expression compared with myotubes. SP-600125 and the proteasomal inhibitor MG-132 blocked LPS-induced degradation of IkappaB-alpha/epsilon and LPS-stimulated expression of IkappaB-alpha mRNA. Yet, only SP-600125 and not MG-132 blocked LPS-induced IL-6 mRNA expression. This suggests that IL-6 gene expression is a downstream target of JNK in C2C12 myoblasts. Topics: Animals; Anthracenes; Anti-Inflammatory Agents; Antineoplastic Agents; Cell Differentiation; Cell Line; Cysteine Proteinase Inhibitors; Dexamethasone; Gene Expression; Interleukin-1; Interleukin-6; JNK Mitogen-Activated Protein Kinases; Leupeptins; Lipopolysaccharides; Mice; Mice, Inbred C3H; Mitogen-Activated Protein Kinases; Muscle, Skeletal; Myoblasts; RNA, Messenger; Tumor Necrosis Factor-alpha | 2003 |
Effect of MG132, a proteasome inhibitor, on the expression of growth related oncogene protein-alpha in human umbilical vein endothelial cells.
Growth related oncogene protein-alpha (GRO-alpha) is a member of C-X-C chemokine and plays an important role in inflammatory responses. Expression of GRO gene family is regulated by a number of factors at both transcriptional and posttranscriptional levels. In the present study, we have addressed the possible regulation of GRO-alpha expression by ubiquitin-proteasome system. Cultures of human umbilical vein endothelial cells were treated with a proteasome inhibitor, MG132, and the levels of GRO-alpha mRNA were analyzed by reverse transcription-polymerase chain reaction or northern blotting. Levels of GRO-alpha protein in the cell-conditioned medium were determined by enzyme-linked immunosorbent assay. MG132 alone increased the levels of GRO-alpha mRNA and protein; however, it did not affect the GRO-alpha mRNA induced by lipopolysaccharide (LPS) and inhibited the LPS-induced decrease in IkappaB levels. Other proteasome inhibitors, MG115 and lactacystin, also induced the expression of GRO-alpha mRNA. MG132 induced the phosphorylation of p38 MAPK, MEK and JNK. Pretreatment of the cells with SB203580, an inhibitor of p38 MAPK, suppressed the MG132-induced GRO-alpha expression, but pretreatment of the cells with U0126, PD98059 or SP600125, inhibitors of MEK1/2 or JNK, did not influence the effect of MG132. We conclude that MG132 upregulates GRO-alpha expression in vascular endothelial cells, at least in part, through the activation of p38 MAPK. Topics: Acetylcysteine; Anthracenes; Cells, Cultured; Chemokine CXCL1; Chemokines, CXC; Cysteine Proteinase Inhibitors; Endothelium, Vascular; Enzyme Inhibitors; Flavonoids; Gene Expression Regulation; Humans; I-kappa B Proteins; Imidazoles; Intercellular Signaling Peptides and Proteins; JNK Mitogen-Activated Protein Kinases; Leupeptins; MAP Kinase Kinase Kinase 1; MAP Kinase Kinase Kinases; Mitogen-Activated Protein Kinases; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Pyridines; Umbilical Veins | 2003 |