leupeptins has been researched along with monodansylcadaverine* in 2 studies
2 other study(ies) available for leupeptins and monodansylcadaverine
Article | Year |
---|---|
Intracellular infection by the human granulocytic ehrlichiosis agent inhibits human neutrophil apoptosis.
In patients with human granulocytic ehrlichiosis (HGE), the HGE agent has been seen only in the peripheral blood granulocytes, which have a life span too short for ehrlichial proliferation. To determine if the HGE agent delays the apoptosis of human peripheral blood neutrophils for its advantage, peripheral blood granulocytes consisting mostly of neutrophils were incubated with freshly freed host cell-free HGE agent in vitro. The HGE agent induced a significant delay in morphological apoptosis and the cytoplasmic appearance of histone-associated DNA fragments in the granulocytes. This antiapoptotic effect was dose dependent. Although much weaker than the HGE agent freshly freed from the host cells, noninfectious purified HGE agent stored frozen and thawed also had antiapoptotic effect, which was lost with proteinase K treatment but not with periodate treatment. Treatment of neutrophils with a transglutaminase inhibitor, monodansylcadaverine, blocked the antiapoptotic effect of the HGE agent. Addition of oxytetracycline, however, did not prevent or reverse the antiapoptotic effect of the HGE agent. These results suggest that binding of a protein component(s) of the HGE agent to neutrophils and subsequent cross-linking and/or internalization of the receptor and ehrlichiae are required for antiapoptotic signaling, but ehrlichial protein synthesis and/or proliferation is not required. MG-132, a proteasome inhibitor, and cycloheximide accelerated the apoptosis of neutrophils and overrode the antiapoptotic effect of the HGE agent. Studies with specific inhibitors suggest that protein kinase A, NF-kappaB, and interleukin 1beta are not involved in the antiapoptotic mechanism of the HGE agent. Topics: Apoptosis; Cadaverine; DNA Fragmentation; Ehrlichia; Genistein; HL-60 Cells; Humans; Interleukin-1; Isoquinolines; Leupeptins; Neutrophils; NF-kappa B; Oxytetracycline; Sulfonamides | 2000 |
Mechanism of autodegradation of cell-surface macromolecules shed by human melanoma cells.
The mechanism of autodegradation of cell-surface macromolecules shed by human melanoma cells was studied by incubating radio-iodinated shed macromolecules with unlabeled sister cells and measuring the appearance of acid-soluble radioactivity. After a preliminary latent period of 1-3 h, degradation continually increased up to 24 h and was concentration-dependent. By contrast, binding to cells was very rapid reaching half-maximal value within 15 min. Autodegradation was markedly reduced (44-82%) by pharmacological agents which interfere with endocytosis or lysosomal enzyme activity, including drugs which inhibit receptor migration into coated pits (dansylcadaverine), endocytosis and intracellular transport (colchicine, cytochalasin B, and monensin), and the activity of lysosomal enzymes (chloroquine, ammonium chloride, leupeptin). Degradation was almost totally suppressed (95%) at 4 degrees C. These data suggest that surface macromolecules shed by melanoma cells are autodegraded in part by re-uptake into melanoma cells followed by degradation in lysosomes. Topics: Ammonium Chloride; Biological Transport; Cadaverine; Cell Line; Chloroquine; Coated Pits, Cell-Membrane; Colchicine; Cytochalasin B; Endocytosis; Humans; Leupeptins; Lysosomes; Melanoma; Membrane Proteins; Monensin; Neoplasm Proteins; Time Factors; Tunicamycin | 1984 |