leupeptins has been researched along with epigallocatechin-gallate* in 6 studies
6 other study(ies) available for leupeptins and epigallocatechin-gallate
Article | Year |
---|---|
Epigallocatechin-3-gallate (EGCG) inhibits aggregation of pulmonary fibrosis associated mutant surfactant protein A2 via a proteasomal degradation pathway.
Epigallocatechin-3-gallate (EGCG), a major catechin found in green tea, plays an important anti-tumor role and is involved in various other biological processes, such as, neuroprotection by prevention of aggregation of misfolded proteins generated because of genetic defects. Surfactant protein A2 mutations (G231V and F198S) have been identified to be associated with pulmonary fibrosis and lung cancer, and these mutations cause protein aggregation, instability as well as secretion deficiency. The present study focused on investigating the inhibitory effects of EGCG on aggregation of mutant SP-A2 and elucidating the potential mechanisms underlying this action.. Wild-type and mutant SP-A2 were transiently expressed in CHO-K1 cells. The aggregated and soluble proteins were separated into NP-40-insoluble and NP-40-soluble fractions. Protein stability was validated by chymotrypsin limited proteolysis assay. Western blot and RT-PCR were used to determine the protein and mRNA expression level, respectively.. Mutant SP-A2 alone or wild-type SP-A2 co-expressed with G231V formed NP-40-insoluble aggregates in CHO-K1 cells. EGCG significantly suppressed this aggregation and alleviated mutant SP-A2 accumulation in the ER. When combined with 4-PBA, EGCG treatment completely blocked mutant SP-A2 aggregate formation. Though secretion of mutant protein was not affected, EGCG facilitated protein instability in both wild-type and mutant protein. Importantly, MG132, a proteasome inhibitor, reversed EGCG-induced aggregate reduction.. EGCG inhibits aggregation of misfolded SP-A2 via induction of protein instability and activation of proteasomal pathway for aggregate degradation. Topics: Animals; Butylamines; Catechin; CHO Cells; Cricetulus; Cysteine Proteinase Inhibitors; Detergents; Gene Expression; Leupeptins; Mutation; Octoxynol; Proteasome Endopeptidase Complex; Protein Aggregates; Protein Stability; Proteolysis; Pulmonary Fibrosis; Pulmonary Surfactant-Associated Protein A; Recombinant Proteins; Solubility | 2019 |
α-Syntrophin stabilizes catalase to reduce endogenous reactive oxygen species levels during myoblast differentiation.
α-Syntrophin is a component of the dystrophin-glycoprotein complex that interacts with various intracellular signaling proteins in muscle cells. The α-syntrophin knock-down C2 cell line (SNKD), established by infecting lentivirus particles with α-syntrophin shRNA, is characterized by a defect in terminal differentiation and increase in cell death. Since myoblast differentiation is accompanied by intensive mitochondrial biogenesis, the generation of intracellular reactive oxygen species (ROS) is also increased during myogenesis. Two-photon microscopy imaging showed that excessive intracellular ROS accumulated during the differentiation of SNKD cells as compared with control cells. The formation of 4-hydroxynonenal adduct, a byproduct of lipid peroxidation during oxidative stress, significantly increased in differentiated SNKD myotubes and was dramatically reduced by epigallocatechin-3-gallate, a well-known ROS scavenger. Among antioxidant enzymes, catalase was significantly decreased during differentiation of SNKD cells without changes at the mRNA level. Of interest was the finding that the degradation of catalase was rescued by MG132, a proteasome inhibitor, in the SNKD cells. This study demonstrates a novel function of α-syntrophin. This protein plays an important role in the regulation of oxidative stress from endogenously generated ROS during myoblast differentiation by modulating the protein stability of catalase. Topics: Aldehydes; Animals; Antioxidants; Blotting, Western; Calcium-Binding Proteins; Catalase; Catechin; Cell Differentiation; Cell Line; Cysteine Proteinase Inhibitors; Leupeptins; Membrane Proteins; Mice; Microscopy, Fluorescence, Multiphoton; Muscle Development; Muscle Proteins; Myoblasts; Oxidative Stress; Protein Stability; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; RNA Interference | 2017 |
Epigallocatechin-3-gallate promotes all-trans retinoic acid-induced maturation of acute promyelocytic leukemia cells via PTEN.
Acute promyelocytic leukemia (APL) is a distinctive subtype of acute myeloid leukemia (AML) in which the hybrid protein promyelocytic leukemia protein/retinoic acid receptor α (PML/RARα) acts as a transcriptional repressor impairing the expression of genes that are critical to myeloid cell mutation. We aimed at explaining the molecular mechanism of green tea polyphenol epigallocatechin-3-gallate (EGCG) enhancement of ATRA-induced APL cell line differentiation. Tumor suppressor phosphatase and tensin homolog (PTEN) was found downregulated in NB4 cells and rescued by proteases inhibitor MG132. A significant increase of PTEN levels was found in NB4, HL-60 and THP-1 cells upon ATRA combined with EGCG treatment, paralleled by increased myeloid differentiation marker CD11b. EGCG in synergy with ATRA promote degradation of PML/RARα and restores PML expression, and increase the level of nuclear PTEN. Pretreatment of PTEN inhibitor SF1670 enhances the PI3K signaling pathway and represses NB4 cell differentiation. Moreover, the induction of PTEN attenuated the Akt phosphorylation levels, pretreatment of PI3K inhibitor LY294002 in NB4 cells, significantly augmented the cell differentiation and increased the expression of PTEN. These results therefore indicate that EGCG targets PML/RARα oncoprotein for degradation and potentiates differentiation of promyelocytic leukemia cells in combination with ATRA via PTEN. Topics: Catechin; Cell Differentiation; Chromones; Drug Resistance, Neoplasm; Gene Expression Regulation, Neoplastic; HL-60 Cells; Humans; Leukemia, Promyelocytic, Acute; Leupeptins; Morpholines; Phenanthrenes; Promyelocytic Leukemia Protein; Proteolysis; PTEN Phosphohydrolase; Retinoic Acid Receptor alpha; Tretinoin | 2017 |
EGCG antagonizes Bortezomib cytotoxicity in prostate cancer cells by an autophagic mechanism.
The proteasome inhibitors Bortezomib (BZM) and MG132 trigger cancer cell death via induction of endoplasmic reticulum (ER) stress and unfolded protein response. Epigallocatechin gallate (EGCG), the most bioactive green tea polyphenol, is known to display strong anticancer properties as it inhibits proteasome activity and induces ER stress. We investigated whether combined delivery of a proteasome inhibitor with EGCG enhances prostate cancer cell death through increased induction of ER stress. Paradoxically, EGCG antagonized BZM cytotoxicity even when used at low concentrations. Conversely, the MG132 dose-response curve was unaffected by co-administration of EGCG. Moreover, apoptosis, proteasome inhibition and ER stress were inhibited in PC3 cells simultaneously treated with BZM and EGCG but not with a combination of MG132 and EGCG; EGCG enhanced autophagy induction in BZM-treated cells only. Autophagy inhibition restored cytotoxicity concomitantly with CHOP and p-eIF2α up-regulation in cells treated with BZM and EGCG. Overall, these findings demonstrate that EGCG antagonizes BZM toxicity by exacerbating the activation of autophagy, which in turn mitigates ER stress and reduces CHOP up-regulation, finally protecting PC3 cells from cell death. Topics: Antineoplastic Agents; Autophagy; Bortezomib; Catechin; Cell Line, Tumor; Endoplasmic Reticulum Stress; Eukaryotic Initiation Factor-2; Humans; Leupeptins; Male; Microtubule-Associated Proteins; Prostatic Neoplasms; Proteasome Inhibitors; Transcription Factor CHOP; Up-Regulation | 2015 |
Down-regulation of glucose-regulated protein (GRP) 78 potentiates cytotoxic effect of celecoxib in human urothelial carcinoma cells.
Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor that has been reported to elicit anti-proliferative response in various tumors. In this study, we aim to investigate the antitumor effect of celecoxib on urothelial carcinoma (UC) cells and the role endoplasmic reticulum (ER) stress plays in celecoxib-induced cytotoxicity. The cytotoxic effects were measured by MTT assay and flow cytometry. The cell cycle progression and ER stress-associated molecules were examined by Western blot and flow cytometry. Moreover, the cytotoxic effects of celecoxib combined with glucose-regulated protein (GRP) 78 knockdown (siRNA), (-)-epigallocatechin gallate (EGCG) or MG132 were assessed. We demonstrated that celecoxib markedly reduces the cell viability and causes apoptosis in human UC cells through cell cycle G1 arrest. Celecoxib possessed the ability to activate ER stress-related chaperones (IRE-1α and GRP78), caspase-4, and CCAAT/enhancer binding protein homologous protein (CHOP), which were involved in UC cell apoptosis. Down-regulation of GRP78 by siRNA, co-treatment with EGCG (a GRP78 inhibitor) or with MG132 (a proteasome inhibitor) could enhance celecoxib-induced apoptosis. We concluded that celecoxib induces cell cycle G1 arrest, ER stress, and eventually apoptosis in human UC cells. The down-regulation of ER chaperone GRP78 by siRNA, EGCG, or proteosome inhibitor potentiated the cytotoxicity of celecoxib in UC cells. These findings provide a new treatment strategy against UC. Topics: Apoptosis; Catechin; Celecoxib; Cell Line, Tumor; Cell Survival; Cyclooxygenase 2 Inhibitors; Down-Regulation; Drug Synergism; Endoplasmic Reticulum; Endoplasmic Reticulum Chaperone BiP; G1 Phase Cell Cycle Checkpoints; Heat-Shock Proteins; Humans; Indoles; Leupeptins; Pyrazoles; RNA, Small Interfering; Stress, Physiological; Sulfonamides; Unfolded Protein Response; Urinary Bladder Neoplasms | 2012 |
(-)-Epigallocatechin-3-gallate downregulates Pg-P and BCRP in a tamoxifen resistant MCF-7 cell line.
We investigated the anticancer effect of EGCG treatment on a breast carcinoma cell line resistant to tamoxifen (MCF-7Tam cells). As there are no reports about the molecular mechanisms implicated in EGCG treatment of tamoxifen resistant breast carcinoma cells, we studied the effects of EGCG treatment on three plasma membrane proteins that are involved in the mechanism of drug-resistance: Multidrug Resistance Protein (MRP1), P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP). EGCG treatment (10-100 microg/ml for 24-72 hours) caused cell growth inhibition and dose-dependent apoptosis: after 100 microg/ml EGCG treatment for 24 hours, Bax expression increased and Bcl2 expression decreased (p<0.05). Coherently, Annexin V-FITC apoptosis assay detected a significant increase in labelled cells (p<0.05). EGCG did not affect MRP1: in contrast, 100 microg/ml EGCG administration caused P-gp decrease to 53% of control cells (p<0.001) and this effect was not due to downregulation of P-gp gene expression. EGCG induced P-gp decrease even when MG132, a strong proteasome inhibitor, was given together with EGCG to MCF-7Tam cells. EGCG treatment also inhibited BCRP activity: mRNA transcription and protein level did not change after treatment, but mitoxantrone test demonstrated a strong inhibition of BCRP activity (p<0.001). In conclusion, the present results showed that EGCG could down-regulate the activity of two molecules that play a key role in drug metabolism and transport and that are highly expressed in tamoxifen resistant breast carcinoma cells. The interaction of EGCG and drugs used in the therapy of estrogen sensitive breast carcinoma ought to be subject of studies and the potential use of EGCG in drug-resistant diseases ought to be better considered. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; bcl-2-Associated X Protein; Breast Neoplasms; Camellia sinensis; Catechin; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Down-Regulation; Drug Resistance, Neoplasm; Gene Expression; Humans; Leupeptins; Mitoxantrone; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Plant Extracts; Protease Inhibitors; Proto-Oncogene Proteins c-bcl-2; RNA, Messenger; Tamoxifen | 2010 |