leupeptins has been researched along with ellipticine* in 2 studies
2 other study(ies) available for leupeptins and ellipticine
Article | Year |
---|---|
The effects of anti-DNA topoisomerase II drugs, etoposide and ellipticine, are modified in root meristem cells of Allium cepa by MG132, an inhibitor of 26S proteasomes.
DNA topoisomerase II (Topo II), a highly specialized nuclear enzyme, resolves various entanglement problems concerning DNA that arise during chromatin remodeling, transcription, S-phase replication, meiotic recombination, chromosome condensation and segregation during mitosis. The genotoxic effects of two Topo II inhibitors known as potent anti-cancer drugs, etoposide (ETO) and ellipticine (EPC), were assayed in root apical meristem cells of Allium cepa. Despite various types of molecular interactions between these drugs and DNA-Topo II complexes at the chromatin level, which have a profound negative impact on the genome integrity (production of double-strand breaks, chromosomal bridges and constrictions, lagging fragments of chromosomes and their uneven segregation to daughter cell nuclei), most of the elicited changes were apparently similar, regarding both their intensity and time characteristics. No essential changes between ETO- and EPC-treated onion roots were noticed in the frequency of G1-, S-, G2-and M-phase cells, nuclear morphology, chromosome structures, tubulin-microtubule systems, extended distribution of mitosis-specific phosphorylation sites of histone H3, and the induction of apoptosis-like programmed cell death (AL-PCD). However, the important difference between the effects induced by the ETO and EPC concerns their catalytic activities in the presence of MG132 (proteasome inhibitor engaged in Topo II-mediated formation of cleavage complexes) and relates to the time-variable changes in chromosomal aberrations and AL-PCD rates. This result implies that proteasome-dependent mechanisms may contribute to the course of physiological effects generated by DNA lesions under conditions that affect the ability of plant cells to resolve topological problems that associated with the nuclear metabolic activities. Topics: Allium; Cysteine Proteinase Inhibitors; Ellipticines; Etoposide; Histones; Leupeptins; Meristem; Phosphorylation; Plant Roots; Proteasome Endopeptidase Complex; Topoisomerase II Inhibitors | 2015 |
A high-content chemical screen identifies ellipticine as a modulator of p53 nuclear localization.
p53 regulates apoptosis and the cell cycle through actions in the nucleus and cytoplasm. Altering the subcellular localization of p53 can alter its biological function. Therefore, small molecules that change the localization of p53 would be useful chemical probes to understand the influence of subcellular localization on the function of p53. To identify such molecules, a high-content screen for compounds that increased the localization of p53 to the nucleus or cytoplasm was developed, automated, and conducted. With this image-based assay, we identified ellipticine that increased the nuclear localization of GFP-mutant p53 protein but not GFP alone in Saos-2 osteosarcoma cells. In addition, ellipticine increased the nuclear localization of endogenous p53 in HCT116 colon cancer cells with a resultant increase in the transactivation of the p21 promoter. Increased nuclear p53 after ellipticine treatment was not associated with an increase in DNA double stranded breaks, indicating that ellipticine shifts p53 to the nucleus through a mechanism independent of DNA damage. Thus, a chemical biology approach has identified a molecule that shifts the localization of p53 and enhances its nuclear activity. Topics: Active Transport, Cell Nucleus; Cell Line, Tumor; Colonic Neoplasms; Cyclin-Dependent Kinase Inhibitor p21; DNA Damage; Drug Evaluation, Preclinical; Ellipticines; Green Fluorescent Proteins; Humans; Leupeptins; Osteosarcoma; Recombinant Fusion Proteins; Thapsigargin; Tumor Suppressor Protein p53 | 2008 |