leupeptins and clasto-lactacystin-beta-lactone

leupeptins has been researched along with clasto-lactacystin-beta-lactone* in 21 studies

Reviews

2 review(s) available for leupeptins and clasto-lactacystin-beta-lactone

ArticleYear
Turnover of StAR protein: roles for the proteasome and mitochondrial proteases.
    Molecular and cellular endocrinology, 2007, Volume: 265-266

    Steroidogenic acute regulatory protein (StAR) is a mitochondrial protein essential for massive synthesis of steroid hormones in the adrenal and the gonads. Our studies suggest that once synthesized on free polyribosomes, StAR preprotein either associates with the outer mitochondrial membrane to mediate transfer of cholesterol substrate required for steroidgenesis, or it is degraded by the proteasome. Proteasome inhibitors can prevent the turnover of StAR preprotein and other matrix-targeted preproteins. Once imported, excessive accumulation of inactive StAR in the matrix is avoided by a rapid turnover. Unexpectedly, mitochondrial StAR turnover can be inhibited by two proteasome inhibitors, i.e., MG132 and clasto-lactacystin beta-lactone, but not epoxomicin. Use of those inhibitors and immuno-electron microscopy data enabled a clear distinction between two pools of intra-mitochondrial StAR, one degraded by matrix protease(s) shortly after import, while the rest of the protein undergoes a slower and inhibitor resistant degradation following translocation onto to the matrix face of the inner membranes.

    Topics: Animals; Humans; Lactones; Leupeptins; Mitochondria; Mitochondrial Membranes; Oligopeptides; Peptide Hydrolases; Phosphoproteins; Protease Inhibitors; Proteasome Endopeptidase Complex

2007
Opposite effects of proteasome inhibitors in the adrenergic induction of arylalkylamine N-acetyltransferase in rat pinealocytes.
    Chronobiology international, 2006, Volume: 23, Issue:1-2

    In the rat pineal gland, the steady-state level of arylalkylamine N-acetyltransferase (AANAT) protein is controlled by transcriptional and translational mechanisms as well as by proteasome-mediated degradation. Studies with proteasome inhibitors, MG132 and clasto-lactacystin beta-lactone (c-lact), show two opposite effects of proteasomal inhibition on norepinephrine (NE)-induction of Aanat. Addition of MG132 or c-lact following NE stimulation causes an increase in AANAT protein level and enzyme activity without affecting the level of Aanat mRNA. In contrast, addition of inhibitors prior to NE stimulation reduces the NE-stimulated Aanat mRNA, AANAT protein, and enzyme activity. The inhibitory effect of proteasomal inhibition on adrenergic-induced Aanat transcription appears specific for Aanat because it has no effect on the adrenergic induction of mitogen-activated protein kinase phosphatase-1 (mkp-1). The effects of the proteasome inhibitors on NE-stimulated Aanat induction appear to be mediated by accumulation of a protein repressor.

    Topics: Adrenergic Agents; Animals; Arylalkylamine N-Acetyltransferase; Lactones; Leupeptins; Models, Biological; Pineal Gland; Protease Inhibitors; Proteasome Inhibitors; Rats; Time Factors

2006

Other Studies

19 other study(ies) available for leupeptins and clasto-lactacystin-beta-lactone

ArticleYear
Two inhibitors of the ubiquitin proteasome system enhance long-term memory formation upon olfactory conditioning in the honeybee (Apis mellifera).
    The Journal of experimental biology, 2014, Oct-01, Volume: 217, Issue:Pt 19

    In honeybees (Apis mellifera), the proteasome inhibitor Z-Leu-Leu-Leu-CHO (MG132) enhances long-term memory (LTM) formation. Studies in vertebrates using different inhibitors of the proteasome demonstrate the opposite, namely an inhibition of memory formation. The reason for this contradiction remains unclear. MG132 is an inhibitor of the proteasome, but also blocks other proteases. Accordingly, one possible explanation might be that other proteases affected by MG132 are responsible for the enhancement of LTM formation. We test this hypothesis by comparing the effect of MG132 and the more specific proteasome inhibitor clasto-lactacystin beta-lactone (β-lactone). We show that these two inhibitors block the activity of the proteasome in honeybee brains to a similar extent, do not affect the animals' survival but do enhance LTM retention upon olfactory conditioning. Thus, the enhancement of LTM formation is not due to MG132-specific side effects, but to inhibition of a protease targeted by MG132 and β-lactone, i.e. the proteasome.

    Topics: Animals; Bees; Conditioning, Classical; Lactones; Leupeptins; Memory, Long-Term; Odorants; Oligopeptides; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Ubiquitin

2014
Pretreatment with proteasome inhibitors protects against oxidative injuries via PPARα-dependent and -independent pathways in ARPE-19 cells.
    Investigative ophthalmology & visual science, 2012, Aug-31, Volume: 53, Issue:9

    Oxidative processes may play important roles in age-related macular degeneration. Previous studies have suggested that enhancing proteasome activity by pretreatment with low doses of proteasome inhibitors reduces injury from oxidative damage in neuronal cultures. The objective of the current study was to determine whether proteasome inhibitors could ameliorate the toxicity from oxidative stresses in ARPE-19 cells and to dissect the pathways that may mediate these protective effects.. The toxicity of oxidative stressors menadione (VK3) and 4-hydroxynonenal (4-HNE) and the protective effects of proteasome inhibitors, including MG-132 and clasto-lactacystin-β-lactone (LA), were studied in ARPE-19 cells. Binding and activation of the peroxisome proliferator-activated receptors (PPARs) family of transcription factors were studied using electrophoretic mobility shift assay (EMSA) and a peroxisome proliferator-activated response element (PPRE)-driven dual-luciferase reporter gene.. An 18-hour pretreatment with 30 to 300 nM MG-132 or 300 to 1000 nM LA reduced the toxicity of menadione or 4-HNE in ARPE-19 cells. The protective effects of MG-132 pretreatment were partially reversed by the PPARα antagonist GW6471 but not by the PPARγ antagonist GW9662; in contrast, neither agent reduced the protective effects of LA. MG-132 but not LA induced increased expression of a PPRE-driven luciferase reporter gene in a dose-dependent manner. Nuclear proteins isolated from ARPE-19 cells treated by MG-132 had increased binding to PPRE sequences as measured by EMSA.. Our data suggest that pretreatment with proteasome inhibitors reduces oxidative injury in ARPE-19 cells and that the underlying mechanisms are different for different proteasome inhibitors, with PPARα-dependent effects for MG-132 and PPAR-independent effects for LA.

    Topics: Aldehydes; Anilides; Cells, Cultured; Cysteine Proteinase Inhibitors; Electrophoretic Mobility Shift Assay; Humans; Lactones; Leupeptins; Oxazoles; Oxidative Stress; PPAR alpha; Retinal Pigment Epithelium; Tyrosine; Vitamin K 3

2012
Ubiquitin proteasomal pathway mediated degradation of p53 in melanoma.
    Archives of biochemistry and biophysics, 2011, Apr-15, Volume: 508, Issue:2

    Ubiquitin proteasomal pathway (UPP) is the principle mechanism for protein catabolism and affects cellular processes critical for survival and proliferation. Levels of tumor suppressor protein p53 are very low in cells due to its rapid turnover by UPP-mediated degradation. While p53 is mutated in human cancers, most human melanomas maintain wild-type conformation. In this study, to investigate the effects of UPP inhibitor invitro and in vivo, we used a genetically-engineered mouse model (GEMM) that has the same genetic alterations as those of human melanomas. Melanoma cells were established from mouse tumors and named 8B20 cells. Treatment of 8B20 cells with the UPP inhibitors, MG132 and clasto-lactacystin-β-lactone, led to an increase in levels of p53 while treatment with non-proteasomal inhibitors did not alter p53 levels. UPP inhibitors induced formation of heavy molecular weight ubiquitinated proteins, a hallmark of UPP inhibition, and p53-specific poly-ubiquitinated products in 8B20 cells. To further decipher the mechanism of p53 stabilization, we investigated half-life of p53 in cells treated with cycloheximide to block de novo protein synthesis. Treatment of 8B20 cells with MG132 led to an increase in the half-life of p53. Further analysis revealed that p53 stabilization was not mediated by phosphorylation of Ser-15 and Ser-20 residues. In vivo studies showed that MG132 induced p53 overexpression and reduced tumor growth, suggesting an important role of p53 stabilization in controlling melanoma. Taken together, our studies provide a proof of principle for using a GEMM to address the mechanisms of action and efficacy of melanoma treatment.

    Topics: Animals; Cell Line, Tumor; Etoposide; G1 Phase; Gene Deletion; Genes, p16; Half-Life; Humans; Lactones; Leupeptins; Melanocytes; Melanoma; Mice; Mice, Transgenic; Protease Inhibitors; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Stability; Tumor Suppressor Protein p53; Ubiquitin

2011
Proteasome inhibitor differentially regulates expression of the major immediate early genes of human cytomegalovirus in human central nervous system-derived cell lines.
    Virus research, 2009, Volume: 142, Issue:1-2

    Proteasome inhibitor, which inhibits NF-kappaB activation, has been reported to activate c-Jun N-terminal kinase (JNK)-c-Jun pathway. In this study, we investigated the effects of proteasome inhibitor on the human cytomegalovirus (HCMV) major immediate early (MIE) gene expression in human central nervous system (CNS)-derived cell lines. Treatment of HCMV-infected 118MGC glioma and U373-MG astrocytoma cells with three proteasome inhibitors, MG132, clasto-lactacystin beta-lactone, and epoxomicin, suppressed MIE protein expression. In contrast, in HCMV-infected IMR-32 neuroblastoma cells, the proteasome inhibitors increased MIE protein expression, even in the presence of NF-kappaB inhibitor SN-50. A luciferase reporter assay demonstrated that MG132 markedly elevated the MIE promoter/enhancer (MIEP) activity in IMR-32 cells, but down-regulated it in 118MGC and U373-MG cells. Mutation in five cAMP response elements (CREs) within the MIEP resulted in a loss of the ability to respond to MG132 in IMR-32 cells. Moreover, Western blotting analysis revealed that MG132 induced c-Jun phosphorylation in all three CNS-derived cell lines, whereas a high level of activating transcription factor-2 (ATF-2) phosphorylation was observed only in IMR-32 cells. Finally, MG132-induced MIE protein expression was suppressed by JNK inhibitor that reduced the phosphorylation levels of both c-Jun and ATF-2. Taken together, these results suggest that the proteasome inhibitors activate CRE binding proteins consisting of c-Jun and ATF-2 through activating the JNK-c-Jun pathway, thereby inducing MIE protein synthesis in IMR-32 cells under the condition where NF-kappaB activity is inhibited.

    Topics: Activating Transcription Factor 2; Cell Line; Central Nervous System; Cytomegalovirus; Cytomegalovirus Infections; Gene Expression Regulation, Viral; Humans; Immediate-Early Proteins; Lactones; Leupeptins; Oligopeptides; Protease Inhibitors; Proteasome Inhibitors; Proto-Oncogene Proteins c-jun

2009
Proteasome inhibitors eliminate protective effect of postconditioning in cultured neonatal cardiomyocytes.
    Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994), 2006, Volume: 52, Issue:3

    A role of proteasomal proteolysis in the pathogenesis of ischemia-reperfusion is being actively studied. To evaluate the participation of the proteasome in postconditioning phenomenon, we used primary culture of neonatal cardiomyocytes. 30 minutes of anoxia followed by 60 minutes of reoxygenation was undergone. Postconditioning was modeled by 3 cycles of 1-minute reoxygenation followed by 1-minute anoxia, respectively. Clasto-lactacystin b-lactone, a specific proteasome inhibitor, in the dose that does not cause cell death (2.5 mM) was added to the culture medium just before the cycles of postconditioning. Percentages of living, necrotic, and apoptotic cells were determined by staining with bisBenzimide and propidium iodide. Autophagy was demonstrated by staining vacuolar structures with monodansyl cadaverine. Proteasomal activity was determined by cleavage intensity of specific fluorogenic substrates. Trypsin-like, chymotrypsin-like and peptidyl-glutamyl peptide-hydrolyzing (PGPH) activities were decreased after anoxia. Reoxygenation led to an increase in trypsin-like and chymotrypsin-like activities comparing to anoxia, but these parameters never reached the control levels. PGPH activity was restored up to the initial level. Postconditioning increased numbers of living cells and decreased that of necrotic, apoptotic and autophagic cells. Paradoxically, it was established, that proteasome inhibitors prevented the necrotic and apoptotic cell death of cardiomyocytes in anoxia-reoxygenation, but in the same concentration abolished the effects of postconditioning. The data obtained permit to suppose that proteasome inhibitors can be used for pharmacological postconditioning.

    Topics: Animals; Animals, Newborn; Apoptosis; Cell Hypoxia; Cells, Cultured; Ischemic Preconditioning, Myocardial; Lactones; Leupeptins; Myocytes, Cardiac; Necrosis; Oxygen Consumption; Protease Inhibitors; Proteasome Inhibitors; Rats

2006
Selective induction of the tumor marker glutathione S-transferase P1 by proteasome inhibitors.
    The Journal of biological chemistry, 2005, Jul-01, Volume: 280, Issue:26

    Exposure of cells to a wide variety of chemoprotective compounds confers resistance to a broad set of carcinogens. For a subset of the chemoprotective compounds, protection is generated by an increase in the abundance of phase 2 detoxification enzymes such as glutathione S-transferases (GSTs). Transcription factor Nrf2, which is sequestered in the cytoplasm by Keap1 (Kelch-like ECH-associated protein-1) under unstimulated conditions, regulates the induction of phase 2 enzymes. In this study, to explore the role of the proteasome in the detoxification response, we tested the effect of proteasome inhibitors such as MG132, clasto-lactacystin beta-lactone, and lactacystin on the induction of GST isozymes and found that these inhibitors selectively induced the class Pi GST isozyme (GST P1). Down-regulation of the proteasome by antisense oligonucleotides or RNA interference indeed resulted in significant up-regulation of GST P1, suggesting that a decline in the proteasome activity could be directly or indirectly linked to the induction of GST P1. From the functional analysis of various deletion constructs of the upstream regulatory region of the GST P1 promoter, GST P1 enhancer I was identified as the response element for proteasome inhibition. Overexpression of the wild-type and dominant-negative forms of Nrf2 and Keap1 had little effect on the induction of GST P1 not only by the proteasome inhibitor, but also by phase 2-inducing isothiocyanate, suggesting that there may be a process of GST P1 induction distinct from other phase 2 gene induction mechanisms. Because GST P1 is highly and specifically induced during early hepatocarcinogenesis as well as in hepatocellular carcinoma cells, these data may provide a potential critical role for the proteasome in the induction of a cellular defense program associated with carcinogenesis.

    Topics: Acetylcysteine; Animals; Biomarkers, Tumor; Blotting, Western; Cysteine; DNA-Binding Proteins; DNA, Complementary; Down-Regulation; Enzyme Inhibitors; Epithelial Cells; Genes, Dominant; Glutathione S-Transferase pi; Glutathione Transferase; Intracellular Signaling Peptides and Proteins; Isoenzymes; Kelch-Like ECH-Associated Protein 1; Lactones; Leupeptins; Luciferases; Mice; NF-E2-Related Factor 2; Oligonucleotides, Antisense; Promoter Regions, Genetic; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Isoforms; Protein Structure, Tertiary; Proteins; Rats; Reverse Transcriptase Polymerase Chain Reaction; RNA Interference; RNA, Small Interfering; Time Factors; Trans-Activators; Transfection; Up-Regulation

2005
Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway.
    The Journal of biological chemistry, 2004, Feb-27, Volume: 279, Issue:9

    Viruses must overcome diverse intracellular defense mechanisms to establish infection. The Vif (virion infectivity factor) protein of human immunodeficiency virus 1 (HIV-1) acts by overcoming the antiviral activity of APOBEC3G (CEM15), a cytidine deaminase that induces G to A hypermutation in newly synthesized viral DNA. In the absence of Vif, APOBEC3G incorporation into virions renders HIV-1 non-infectious. We report here that Vif counteracts the antiviral activity of APOBEC3G by targeting it for destruction by the ubiquitin-proteasome pathway. Vif forms a complex with APOBEC3G and enhances APOBEC3G ubiquitination, resulting in reduced steady-state APOBEC3G levels and a decrease in protein half-life. Furthermore, Vif-dependent degradation of APOBEC3G is blocked by proteasome inhibitors or ubiquitin mutant K48R. A mutation of highly conserved cysteines or the deletion of a conserved SLQ(Y/F)LA motif in Vif results in mutants that fail to induce APOBEC3G degradation and produce non-infectious HIV-1; however, mutations of conserved phosphorylation sites in Vif that impair viral replication do not affect APOBEC3G degradation, suggesting that Vif is important for other functions in addition to inducing proteasomal degradation of APOBEC3G. Vif is monoubiquitinated in the absence of APOBEC3G but is polyubiquitinated and rapidly degraded when APOBEC3G is coexpressed, suggesting that coexpression accelerates the degradation of both proteins. These results suggest that Vif functions by targeting APOBEC3G for degradation via the ubiquitin-proteasome pathway and implicate the proteasome as a site of dynamic interplay between microbial and cellular defenses.

    Topics: APOBEC-3G Deaminase; Cell Line; Cell Line, Tumor; Conserved Sequence; Cysteine; Cysteine Endopeptidases; Cytidine Deaminase; Drug Interactions; Enzyme Inhibitors; Gene Deletion; Gene Expression; Gene Products, vif; Half-Life; HIV-1; Humans; Immunosorbent Techniques; Lactones; Leupeptins; Multienzyme Complexes; Mutation; Nucleoside Deaminases; Phosphorylation; Proteasome Endopeptidase Complex; Proteins; Recombinant Proteins; Repressor Proteins; Reverse Transcriptase Polymerase Chain Reaction; Structure-Activity Relationship; Transfection; Ubiquitin; vif Gene Products, Human Immunodeficiency Virus

2004
Role of proteasomes in the degradation of short-lived proteins in human fibroblasts under various growth conditions.
    The international journal of biochemistry & cell biology, 2003, Volume: 35, Issue:5

    Degradation of proteins in the cells occurs by proteasomes, lysosomes and other cytosolic and organellar proteases. It is believed that proteasomes constitute the major proteolytic pathway under most conditions, especially when degrading abnormal and other short-lived proteins. However, no systematic analysis of their role in the overall degradation of truly short-lived cell proteins has been carried out. Here, the degradation of short-labelled proteins was examined in human fibroblasts by release of trichloroacetic acid-soluble radioactivity. The kinetics of degradation was decomposed into two, corresponding to short- and long-lived proteins, and the effect of proteasomal and lysosomal inhibitors on their degradation, under various growth conditions, was separately investigated. From the degradation kinetics of proteins labelled for various pulse times it can be estimated that about 30% of newly synthesised proteins are degraded with a half-life of approximately 1h. These rapidly degraded proteins should mostly include defective ribosomal products. Deprivation of serum and confluent conditions increased the degradation of the pool of long-lived proteins in fibroblasts without affecting, or affecting to a lesser extent, the degradation of the pool of short-lived proteins. Inhibitors of proteasomes and of lysosomes prevented more than 80% of the degradation of short-lived proteins. It is concluded that, although proteasomes are responsible of about 40-60% of the degradation of short-lived proteins in normal human fibroblasts, lysosomes have also an important participation in the degradation of these proteins. Moreover, in confluent fibroblasts under serum deprivation, lysosomal pathways become even more important than proteasomes in the degradation of short-lived proteins.

    Topics: Autophagy; Cells, Cultured; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Fibroblasts; Humans; Hydrolysis; Kinetics; Lactones; Leupeptins; Lysosomes; Multienzyme Complexes; Proteasome Endopeptidase Complex; Proteins; Scintillation Counting

2003
The C-terminal T peptide of acetylcholinesterase enhances degradation of unassembled active subunits through the ERAD pathway.
    The EMBO journal, 2003, Jul-15, Volume: 22, Issue:14

    The catalytic domain of acetylcholinesterase AChE(T) subunits is followed by a C-terminal T peptide which mediates their association with the proline-rich attachment domain (PRAD) of anchoring proteins. Addition of the T peptide induced intracellular degradation and concomitantly reduced to variable degrees the secretion of AChE species differing in their oligomerization capacity and of human alkaline phosphatase. The T peptide forms an amphiphilic alpha-helix, containing a series of conserved aromatic residues. Replacement of two, four or five aromatic residues gradually suppressed degradation and increased secretion. Co-expression with a PRAD- containing protein induced the assembly of PRAD-linked tetramers in the endoplasmic reticulum (ER) and allowed partial secretion of a dimerization- defective mutant; by masking the aromatic side chains, hetero-oligomerization rescued this enzyme from degradation. Degradation was due to ERAD, since it was not blocked by brefeldin A but was sensitive to proteasome inhibitors. Kifunensine reduced degradation, suggesting a cooperativity between the glycosylated catalytic domain and the non-glycosylated T peptide. This system appears particularly well suited to analyze the mechanisms which determine the degradation of correctly folded multidomain proteins in the ER.

    Topics: Acetylcholinesterase; Alkaline Phosphatase; Amino Acid Sequence; Amino Acid Substitution; Amino Acids, Aromatic; Animals; Chlorocebus aethiops; Conserved Sequence; COS Cells; Cysteine; Dimerization; Endoplasmic Reticulum; Humans; Lactones; Leupeptins; Molecular Sequence Data; Nippostrongylus; Peptides; Protein Subunits; Rats; Serine

2003
Involvement of the proteasome in activation of endothelial nitric oxide synthase.
    Life sciences, 2003, Sep-12, Volume: 73, Issue:17

    Nitric oxide originating from the endothelial cells of the vessel wall is essential for the vascular system. It is produced by the enzyme endothelial nitric oxide synthase (eNOS). Cellular eNOS activity is affected by changes in eNOS synthesis. To address whether degradation also contributes to eNOS activity, the effect of proteasome inhibitors on eNOS-mediated NO synthesis was studied in the microvascular endothelial cell line bEnd.3 and in cultured primary aortic endothelial cells. Surprisingly, agonist-induced increases in eNOS activity were reduced to 42 and 50% in the presence of the proteasome inhibiting drugs MG132 and clasto-lactacystin-beta-lactone, respectively (P < 0.01). The decrease in activity occurred within 1 hour of drug treatment and was not accompanied by a change in intracellular levels of either eNOS or its inhibitor caveolin-1. Taken together, these data may indicate that eNOS is regulated by an interacting protein, different from caveolin-1, that inhibits its activity and is rapidly degraded by the proteasome in the presence of eNOS agonists.

    Topics: Animals; Aorta; Blotting, Western; Capillaries; Cattle; Cell Line; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Dose-Response Relationship, Drug; Endothelium, Vascular; Fluoresceins; Lactones; Leupeptins; Mice; Multienzyme Complexes; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Proteasome Endopeptidase Complex

2003
Removal of oxidatively damaged proteins from lens cells by the ubiquitin-proteasome pathway.
    Experimental eye research, 2001, Volume: 73, Issue:2

    Understanding how oxidized proteins are removed is important since accumulation of such damaged proteins is causally related to cellular and organismic dysfunction, disease and aging. Previous work showed that activity of the ubiquitin-proteasome pathway (UPP) in lens cells increased during recovery from oxidative stress ( Shang et al., 1997b : J. Biol. Chem. 272, 23086-93). In this study we sought to determine if the up-regulation of the UPP during recovery from oxidative stress has a role in selective removal of oxidized proteins from the cells. In cells which were not exposed to peroxide, inhibition of the proteasome with MG132 or clasto-lactacystin beta-lactone had little effect on protein carbonyl levels. However, inhibition of the proteasome in the 20 microM peroxide-treated cells caused an approximate 60% increase in levels of protein carbonyl and an approximate 100% increase in levels of ubiquitin conjugates. The carbonyl-containing proteins that accumulated in the presence of the proteasome inhibitor co-localized with high molecular mass ubiquitin-protein conjugates. Furthermore, isolated carbonyl-containing proteins from H2O2-treated cells were ubiquitinated, and ubiquitin-conjugates were enriched with carbonyl-containing proteins. The diminished effect of proteasome inhibitors on protein carbonyl levels, together with the robust increase in ubiquitin-protein conjugates and accompanied increases in oxidized proteins, upon exposure to 60 microM H2O2 indicate that the proteasomal step of the UPP is more susceptible to oxidative inactivation than the ubiquitination step. In fact, oxidative stress is associated with a hyperactivation of the ubiquitin-activating enzyme. These data indicate that the UPP plays a role in removal of oxidatively damaged proteins from cells and that attenuation of the UPP activity may result in cytotoxic accumulation of damaged proteins, possibly including the ubiquitinated forms.

    Topics: Animals; Crystallins; Cysteine Proteinase Inhibitors; Lactones; Lens, Crystalline; Leupeptins; Membrane Proteins; Molecular Weight; Oxidative Stress; Peptide Hydrolases; Rabbits; Ubiquitins; Up-Regulation

2001
Inhibition of proteasome activity strongly affects kiwifruit pollen germination. Involvement of the ubiquitin/proteasome pathway as a major regulator.
    Plant physiology, 2001, Volume: 126, Issue:3

    The 26S proteasome is a multicatalytic complex that acts as primary protease of the ubiquitin-mediated proteolytic pathway in eukaryotes. We provide here the first evidence that the proteasome plays a key role in regulating pollen tube growth. Immunoblotting experiments revealed the presence of high levels of free ubiquitin and ubiquitin conjugates in rehydrated and germinating pollen of kiwifruit [Actinidia deliciosa var. deliciosa (A. Chev) C. F. Liang et A. R. Ferguson]. Proteasome activity, assayed fluorometrically, accompanied the progression of germination. Specific inhibitors of proteasome function such as benzyloxycarbonyl-leucinyl-leucinyl-leucinal (MG-132), clasto-lactacystin beta-lactone, and epoxomicin significantly decreased tube growth or altered tube morphology. High-molecular mass, ubiquitinated proteins accumulated in MG-132- and beta-lactone-treated pollen, indicating that proteasome function was effectively impaired. The inhibitors were also able to decrease in vitro proteasome activity in pollen extracts. Because MG-132 can inhibit calpains, as well as the proteasome, trans-epoxy succinyl-L-leucylamido-(4-guanidino) butane (E-64), an inhibitor of cysteine proteases, was investigated. Some reduction in tube growth rate was observed, but only at 80 microM E-64, and no abnormal tubes were produced. Furthermore, no inhibition of tube growth was observed when another inhibitor of cysteine proteases, leupeptin, or inhibitors of serine and aspartic proteases (phenylmethylsulfonyl fluoride and pepstatin) were used. Our results indicate that protein turnover during tube organization and elongation in kiwifruit pollen is important, and our results also implicate the ubiquitin/26S proteasome as the major proteolytic pathway involved.

    Topics: Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Fruit; Germination; Lactones; Leupeptins; Magnoliopsida; Multienzyme Complexes; Pollen; Proteasome Endopeptidase Complex; Ubiquitins

2001
Proteasome inhibitors block a late step in lysosomal transport of selected membrane but not soluble proteins.
    Molecular biology of the cell, 2001, Volume: 12, Issue:8

    The ubiquitin-proteasome pathway acts as a regulator of the endocytosis of selected membrane proteins. Recent evidence suggests that it may also function in the intracellular trafficking of membrane proteins. In this study, several models were used to address the role of the ubiquitin-proteasome pathway in sorting of internalized proteins to the lysosome. We found that lysosomal degradation of ligands, which remain bound to their receptors within the endocytic pathway, is blocked in the presence of specific proteasome inhibitors. In contrast, a ligand that dissociates from its receptor upon endosome acidification is degraded under the same conditions. Quantitative electron microscopy showed that neither the uptake nor the overall distribution of the endocytic marker bovine serum albumin-gold is substantially altered in the presence of a proteasome inhibitor. The data suggest that the ubiquitin-proteasome pathway is involved in an endosomal sorting step of selected membrane proteins to lysosomes, thereby providing a mechanism for regulated degradation.

    Topics: Animals; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Endocytosis; Humans; Lactones; Leupeptins; Ligands; Lysosomes; Multienzyme Complexes; Nerve Growth Factor; Proteasome Endopeptidase Complex; Protein Transport; Receptor, trkA; Receptors, Somatotropin; Transferrin

2001
The proteasome participates in degradation of mutant alpha 1-antitrypsin Z in the endoplasmic reticulum of hepatoma-derived hepatocytes.
    The Journal of biological chemistry, 2001, Nov-30, Volume: 276, Issue:48

    Because retention of mutant alpha(1)-antitrypsin (alpha(1)-AT) Z in the endoplasmic reticulum (ER) is associated with liver disease in alpha(1)-AT-deficient individuals, the mechanism by which this aggregated glycoprotein is degraded has received considerable attention. In previous studies using stable transfected human fibroblast cell lines and a cell-free microsomal translocation system, we found evidence for involvement of the proteasome in degradation of alpha(1)-ATZ (Qu, D., Teckman, J. H., Omura, S., and Perlmutter, D. H. (1996) J. Biol. Chem. 271, 22791-22795). In more recent studies, Cabral et al. (Cabral, C. M., Choudhury, P., Liu, Y., and Sifers, R. N. (2000) J. Biol. Chem. 275, 25015-25022) found that degradation of alpha(1)-ATZ in a stable transfected murine hepatoma cell line was inhibited by tyrosine phosphatase inhibitors, but not by the proteasomal inhibitor lactacystin and concluded that the proteasome was only involved in ER degradation of alpha(1)-ATZ in nonhepatocytic cell types or in cell types with levels of alpha(1)-AT expression that are substantial lower than that which occurs in hepatocytes. To examine this important issue in further detail, in this study we established rat and murine hepatoma cell lines with constitutive and inducible expression of alpha(1)-ATZ. In each of these cell lines degradation of alpha(1)-ATZ was inhibited by lactacystin, MG132, epoxomicin, and clasto-lactacystin beta-lactone. Using the inducible expression system to regulate the relative level of alpha(1)-ATZ expression, we found that lactacystin had a similar inhibitory effect on degradation of alpha(1)-ATZ at high and low levels of alpha(1)-AT expression. Although there is substantial evidence that other mechanisms contribute to ER degradation of alpha(1)-ATZ, the data reported here indicate that the proteasome plays an important role in many cell types including hepatocytes.

    Topics: Acetylcysteine; alpha 1-Antitrypsin; Animals; Antibiotics, Antineoplastic; Carcinoma, Hepatocellular; Cell Line; Cells, Cultured; Cysteine Endopeptidases; Electrophoresis, Polyacrylamide Gel; Endoplasmic Reticulum; Fibroblasts; HeLa Cells; Hepatocytes; Humans; Lactones; Leupeptins; Liver; Mice; Multienzyme Complexes; Mutation; Oligopeptides; Precipitin Tests; Proteasome Endopeptidase Complex; Protein Binding; Rats; Time Factors; Transfection; Tumor Cells, Cultured

2001
Induction of competence for elicitation of defense responses in cucumber hypocotyls requires proteasome activity.
    The Plant journal : for cell and molecular biology, 2000, Volume: 21, Issue:3

    The epidermal cells of hypocotyls from etiolated cucumber seedlings are not constitutively competent for elicitation of the rapid H2O2 defense response. However, elicitor competence developed while conditioning the surface-abraded seedlings by rotating them in buffer for 4 h. Competence development was greatly potentiated by inducers of systemic acquired resistance and suppressed by specific inhibitors of proteasome activity, clastolactacystin beta-lactone (LAC) and carboxybenzoyl-L-leucyl-L-leucyl-L-leucinal (LLL). In the freshly abraded seedlings, chitinase gene activation became evident approximately 4 h after elicitor addition. Accumulation of chitinase mRNA was enhanced upon conditioning prior to elicitation and was inhibited by LAC and LLL, indicating that the process which leads to H2O2 elicitation competence is also superimposed on the elicitation of chitinase mRNA. LAC and LLL caused an accumulation of ubiquitin-conjugated proteins and enhanced the expression of a proteasome alpha-subunit, suggesting that proteasome activity was specifically inhibited and that the effect observed on gene expression was not due to impaired gene induction in general. Together, our results suggest that the ubiquitin-proteasome system may play a crucial role in a process which switches the signaling pathway for diverse plant defense responses into a functional state, as is known for many basic cellular processes in both animals and yeast.

    Topics: Adenosine Triphosphatases; Chitinases; Cucumis sativus; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Darkness; Growth Inhibitors; Hydrogen Peroxide; Hypocotyl; Lactones; Leupeptins; Light; Multienzyme Complexes; Proteasome Endopeptidase Complex; RNA, Messenger

2000
Proteasome-mediated degradation of the papillomavirus E2-TA protein is regulated by phosphorylation and can modulate viral genome copy number.
    Journal of virology, 2000, Volume: 74, Issue:13

    The bovine papillomavirus E2 proteins regulate viral transcription, replication, and episomal genome maintenance. We have previously mapped the major phosphorylation sites of the E2 proteins to serine residues 298 and 301 and shown that mutation of serine residue 301 to alanine leads to a dramatic (10- to 20-fold) increase in viral DNA copy number. In this study we analyzed how phosphorylation regulates E2 protein function. S301 is located in a PEST sequence; these sequences are often found in proteins with a short half-life and can be regulated by phosphorylation. We show here that the E2 protein is ubiquitinated and degraded by the proteasome. Mutation of serine 301 to alanine increases the half-life of E2 from approximately 50 min to 160 min. Furthermore, the A301 E2 protein shows greatly reduced ubiquitination and degradation by the proteasome. These results suggest that the E2 protein level is regulated by phosphorylation, which in turn determines viral episomal copy number.

    Topics: Alanine; Animals; Bovine papillomavirus 1; Cattle; Cell Line; Chlorocebus aethiops; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; DNA-Binding Proteins; DNA, Viral; Gene Dosage; Genome, Viral; Lactones; Leupeptins; Multienzyme Complexes; Mutagenesis, Site-Directed; Papilloma; Papillomavirus Infections; Phosphorylation; Proteasome Endopeptidase Complex; Serine; Viral Proteins; Warts

2000
Proteasome-mediated regulation of interleukin-1beta turnover and export in human monocytes.
    Journal of leukocyte biology, 2000, Volume: 68, Issue:1

    Interleukin-1beta is a secreted protein that accumulates in the cytosol as an inactive precursor (pIL-1beta) before processing and release of biologically active protein. To understand the impact of this property on IL-1beta production, we examined the intracellular stability of pIL-1beta in lipopolysaccharide (LPS)-stimulated human monocytes. Precursor IL-1beta was degraded with a relatively short half-life of 2.5 h in the promonocytic cell line, THP-1, and in primary monocytes. MG132 (carbobenzoxyl-leucinyl-leucinyl-leucinal) stabilized pIL-1beta levels in THP-1 cells, suggesting that degradation was proteasome-mediated, but this inhibitor was toxic for primary monocytes, causing release of pIL-1beta as well as the cytoplasmic enzyme, lactate dehydrogenase (LDH) into supernatants. In contrast, clasto-lactacystin beta-lactone, a specific inhibitor of the proteasome, caused a dose-dependent stabilization of intracellular pIL-1beta, and this led to a corresponding increase in mIL-1beta and pIL-1beta but not LDH release into culture supernatants. Therefore, by regulating intracellular levels of precursor IL-1beta, the proteasome plays an important and previously unrecognized role in controlling the amount of biologically active IL-1beta that is exported by activated monocytes.

    Topics: Acrylates; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Half-Life; Humans; Interleukin-1; Lactones; Leucine; Leukemia, Monocytic, Acute; Leupeptins; Lipopolysaccharides; Monocytes; Multienzyme Complexes; Neoplasm Proteins; Proteasome Endopeptidase Complex; Tumor Cells, Cultured

2000
Formation of nuclear HSF1 granules varies depending on stress stimuli.
    Cell stress & chaperones, 2000, Volume: 5, Issue:3

    In concert with the stress-induced activation of human heat shock factor 1 (HSF1), the factor becomes inducibly phosphorylated and accumulates into nuclear granules. To date, these processes are not fully understood. Here, we show that although stress caused by the proteasome inhibitors MG132 and clasto-lactacystine beta-lactone induces the expression of Hsp70, the formation of HSF1 granules is affected differently in comparison to heat shock. Furthermore, proteasome inhibition increases serine phosphorylation on HSF1, but to a lesser extent than heat stress. Our results suggest that, depending on the type of stress stimulus, the multiple events associated with HSF1 activation might be affected differently.

    Topics: Blotting, Western; Cell Nucleus Structures; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; DNA-Binding Proteins; Heat Shock Transcription Factors; Heat-Shock Proteins; Heat-Shock Response; HeLa Cells; HSP70 Heat-Shock Proteins; Humans; K562 Cells; Lactones; Leupeptins; Microscopy, Fluorescence; Multienzyme Complexes; Phosphorylation; Promoter Regions, Genetic; Proteasome Endopeptidase Complex; Recombinant Proteins; Transcription Factors

2000
The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms.
    Journal of virology, 1998, Volume: 72, Issue:8

    The small nuclear structures known as ND10 or PML nuclear bodies have been implicated in a variety of cellular processes including response to stress and interferons, oncogenesis, and viral infection, but little is known about their biochemical properties. Recently, a ubiquitin-specific protease enzyme (named HAUSP) and a ubiquitin-homology family protein (PIC1) have been found associated with ND10. HAUSP binds strongly to Vmw110, a herpesvirus regulatory protein which has the ability to disrupt ND10, while PIC1 was identified as a protein which interacts with PML, the prototype ND10 protein. We have investigated the role of ubiquitin-related pathways in the mechanism of ND10 disruption by Vmw110 and the effect of virus infection on PML stability. The results show that the disruption of ND10 during virus infection correlates with the loss of several PML isoforms and this process is dependent on active proteasomes. The PML isoforms that are most sensitive to virus infection correspond closely to those which have recently been identified as being covalently conjugated to PIC1. In addition, a large number of PIC1-protein conjugates can be detected following transfection of a PIC1 expression plasmid, and many of these are also eliminated in a Vmw110-dependent manner during virus infection. These observations provide a biochemical mechanism to explain the observed effects of Vmw110 on ND10 and suggest a simple yet powerful mechanism by which Vmw110 might function during virus infection.

    Topics: Animals; Cell Line; Cricetinae; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Endopeptidases; Herpesvirus 1, Human; Humans; Immediate-Early Proteins; Isomerism; Lactones; Leupeptins; Multienzyme Complexes; Neoplasm Proteins; Nuclear Proteins; Promyelocytic Leukemia Protein; Proteasome Endopeptidase Complex; SUMO-1 Protein; Transcription Factors; Tumor Cells, Cultured; Tumor Suppressor Proteins; Ubiquitin Thiolesterase; Ubiquitin-Protein Ligases; Ubiquitin-Specific Peptidase 7; Ubiquitins

1998