leupeptins and 6-methyl-2-(phenylethynyl)pyridine

leupeptins has been researched along with 6-methyl-2-(phenylethynyl)pyridine* in 1 studies

Other Studies

1 other study(ies) available for leupeptins and 6-methyl-2-(phenylethynyl)pyridine

ArticleYear
Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression.
    Neuron, 2006, Aug-17, Volume: 51, Issue:4

    Genetic deletion of fragile X mental retardation protein (FMRP) has been shown to enhance mGluR-dependent long-term depression (LTD). Herein, we demonstrate that mGluR-LTD induces a transient, translation-dependent increase in FMRP that is rapidly degraded by the ubiquitin-proteasome pathway. Moreover, proteasome inhibitors abolished mGluR-LTD, and LTD was absent in mice that overexpress human FMRP. Neither translation nor proteasome inhibitors blocked the augmentation of mGluR-LTD in FMRP-deficient mice. In addition, mGluR-LTD is associated with rapid increases in the protein levels of FMRP target mRNAs in wild-type mice. Interestingly, the basal levels of these proteins were elevated and their synthesis was improperly regulated during mGluR-LTD in FMRP-deficient mice. Our findings indicate that hippocampal mGluR-LTD requires the rapid synthesis and degradation of FMRP and that mGluR-LTD triggers the synthesis of FMRP binding mRNAs. These findings indicate that the translation, ubiquitination, and proteolysis of FMRP functions as a dynamic regulatory system for controlling synaptic plasticity.

    Topics: Animals; Animals, Newborn; Anisomycin; Benzoates; Blotting, Western; Cysteine Proteinase Inhibitors; Dose-Response Relationship, Drug; Drug Interactions; Excitatory Amino Acid Antagonists; Fluorescent Antibody Technique; Fragile X Mental Retardation Protein; Glycine; In Vitro Techniques; Leupeptins; Long-Term Synaptic Depression; Male; Methoxyhydroxyphenylglycol; Mice; Mice, Knockout; Microtubule-Associated Proteins; Models, Biological; Proteasome Endopeptidase Complex; Protein Biosynthesis; Protein Synthesis Inhibitors; Pyridines; Receptors, Metabotropic Glutamate; RNA, Messenger; Signal Transduction

2006