leukotriene-b4 and 3-nitrotyrosine

leukotriene-b4 has been researched along with 3-nitrotyrosine* in 8 studies

Other Studies

8 other study(ies) available for leukotriene-b4 and 3-nitrotyrosine

ArticleYear
A gamma-tocopherol-rich mixture of tocopherols inhibits chemically induced lung tumorigenesis in A/J mice and xenograft tumor growth.
    Carcinogenesis, 2010, Volume: 31, Issue:4

    The present study investigated the effects of a preparation of a gamma-tocopherol-rich mixture of tocopherols (gamma-TmT) on chemically induced lung tumorigenesis in female A/J mice and the growth of H1299 human lung cancer cell xenograft tumors. In the A/J mouse model, the lung tumors were induced by either 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK; intraperitoneal injections with 100 and 75 mg/kg on Week 1 and 2, respectively) or NNK plus benzo[a]pyrene (B[a]P) (8 weekly gavages of 2 mumole each from Week 1 to 8). The NNK plus B[a]P treatment induced 21 tumors per lung on Week 19; dietary 0.3% gamma-TmT treatment during the entire experimental period significantly lowered tumor multiplicity, tumor volume and tumor burden (by 30, 50 and 55%, respectively; P < 0.05). For three groups of mice treated with NNK alone, the gamma-TmT diet was given during the initiation stage (Week 0 to 3), post-initiation stage (Week 3 to 19) or the entire experimental period, and the tumor multiplicity was reduced by 17.8, 19.7 or 29.3%, respectively (P < 0.05). gamma-TmT treatment during the tumor initiation stage or throughout the entire period of the experiment also significantly reduced tumor burden (by 36 or 43%, respectively). In the xenograft tumor model of human lung cancer H1299 cells in NCr-nu/nu mice, 0.3% dietary gamma-TmT treatment significantly reduced tumor volume and tumor weight by 56 and 47%, respectively (P < 0.05). In both the carcinogenesis and tumor growth models, the inhibitory action of gamma-TmT was associated with enhanced apoptosis and lowered levels of 8-hydroxydeoxyguanine, gamma-H2AX and nitrotyrosine in the tumors of the gamma-TmT-treated mice. In cell culture, the growth of H1299 cells was inhibited by tocopherols with their effectiveness following the order of delta-T > gamma-TmT > gamma-T, whereas alpha-T was not effective. These results demonstrate the inhibitory effect of gamma-TmT against lung tumorigenesis and the growth of xenograft tumors of human lung cancer cells. The inhibitory activity may be due mainly to the actions of delta-T and gamma-T.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Antioxidants; Apoptosis; Benzo(a)pyrene; Cell Line, Tumor; Cell Proliferation; Deoxyguanosine; Dinoprostone; Female; gamma-Tocopherol; Histones; Leukotriene B4; Lung Neoplasms; Mice; Neovascularization, Pathologic; Nitrosamines; Tyrosine; Xenograft Model Antitumor Assays

2010
A gamma-tocopherol-rich mixture of tocopherols inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sulfate sodium-treated mice.
    Cancer prevention research (Philadelphia, Pa.), 2009, Volume: 2, Issue:2

    We investigated the effects of a gamma-tocopherol-rich mixture of tocopherols (gamma-TmT, containing 57% gamma-T, 24% delta-T, and 13% alpha-T) on colon carcinogenesis in azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice. In experiment 1, 6-week-old male CF-1 mice were given a dose of AOM (10 mg/kg body weight, i.p.), and 1 week later, 1.5% DSS in drinking water for 1 week. The mice were maintained on either a gamma-TmT (0.3%)-enriched or a standard AIN93M diet, starting 1 week before the AOM injection, until the termination of experiment. In the AOM/DSS-treated mice, dietary gamma-TmT treatment resulted in a significantly lower colon inflammation index (52% of the control) on day 7 and number of colon adenomas (9% of the control) on week 7. gamma-TmT treatment also resulted in higher apoptotic index in adenomas, lower prostaglandin E2, leukotriene B4, and nitrotyrosine levels in the colon, and lower prostaglandin E2, leukotriene B4, and 8-isoprostane levels in the plasma on week 7. Some of the decreases were observed even on day 7. In experiment 2 with AOM/DSS- treated mice sacrificed on week 21, dietary 0.17% or 0.3% gamma-TmT treatment, starting 1 week before the AOM injection, significantly inhibited adenocarcinoma and adenoma formation in the colon (to 17-33% of the control). Dietary 0.3% gamma-TmT that was initiated after DSS treatment also exhibited a similar inhibitory activity. The present study showed that gamma-TmT effectively inhibited colon carcinogenesis in AOM/DSS-treated mice, and the inhibition may be due to the apoptosis-inducing, anti-inflammatory, antioxidative, and reactive nitrogen species-trapping activities of tocopherols.

    Topics: Adenocarcinoma; Adenoma; Animals; Antioxidants; Apoptosis; Azoxymethane; Carcinogens; Cell Transformation, Neoplastic; Cocarcinogenesis; Colon; Colonic Neoplasms; Dextran Sulfate; Dinoprost; Dinoprostone; Dose-Response Relationship, Drug; gamma-Tocopherol; Inflammation; Leukotriene B4; Male; Mice; Tyrosine

2009
Effects of fine carbonaceous particles containing high and low unpaired electron spin densities on lungs of female mice.
    Translational research : the journal of laboratory and clinical medicine, 2008, Volume: 152, Issue:4

    The negative impacts on human health that accompany inhalation of atmospheric particles are documented in numerous epidemiologic studies, but the effect of specific chemical properties of the particles is generally unknown. We developed and employed technology for generating inhalable aerosols of carbonaceous air pollution particles that have specific physical and chemical properties. We find that inhaling particles with greater unpaired electron spin (free radical) densities stimulates greater lung inflammatory and oxidative stress responses. Cultured alveolar macrophages take up more particles of greater free radical content, develop mitochondrial abnormalities, and release more leukotriene B(4) (LTB(4)) than alveolar macrophages exposed to lesser free-radical-containing particles in vitro. Mice exposed to high free radical particles in vivo also develop mitochondrial abnormalities in alveolar macrophages and increased oxidative stress, which is reflected by increases in lung nitrotyrosine staining and lung lavage nitrogen oxide levels compared with those of lesser free radical density. These results provide insight for the unexplained geographic differences and have implications for fossil fuel combustion conditions and the impact of fine particles on health and disease.

    Topics: Aerosols; Animals; Bronchoalveolar Lavage Fluid; Cells, Cultured; Electron Spin Resonance Spectroscopy; Female; Free Radicals; Inhalation Exposure; Leukotriene B4; Lung; Macrophages, Alveolar; Mice; Mitochondria; Nitric Oxide; Oxidative Stress; Particulate Matter; Soot; Tyrosine

2008
Peroxynitrite-induced nitrotyrosination of proteins is blocked by direct 5-lipoxygenase inhibitor zileuton.
    The Journal of pharmacology and experimental therapeutics, 2001, Volume: 299, Issue:1

    We have previously shown that the ability of overnight pretreatment with lipopolysaccharide (LPS) to suppress alveolar macrophage (AM) leukotrienes (LT) synthesis is explained by induction of nitric oxide (NO), and reactive oxygen intermediates (ROI). More recently we have demonstrated that the generation of peroxynitrite (ONOO-) from the combination of NO and ROI directly nitrotyrosinates the 5-lipoxygenase (5-LO) enzyme and reduces cell-free and intact AM 5-LO metabolism. This effect of ONOO- was associated with nitrotyrosination of the 5-LO enzyme in intact cells and after treatment of recombinant enzyme. We postulated that LPS treatment of cells resulted in activation of 5-LO with the generation of ROI, which in turn led to autoinactivation of the enzyme. In an effort to suppress ROI generated from activation of 5-LO we examined the effect of a direct 5-LO inhibitor on LPS-induced suppression of LT synthesis. Coincubation with the reversible 5-LO inhibitor zileuton during the LPS pretreatment of intact cells dose dependently blocked the inhibition of 5-LO metabolism by LPS. The effect of zileuton on LPS-induced suppression of LT synthesis was similar to that of N-monomethyl-L-arginine. Zileuton had no effect on inducible nitric-oxide synthase induction. Interestingly, zileuton blocked ONOO--induced nitrotyrosination of recombinant 5-LO in a cell-free system as well as of native enzyme in intact cells. Moreover, zileuton blocked the nitrotyrosination of other proteins. We conclude that the suppression of 5-LO activity occurring with LPS treatment can be blocked by zileuton. The mechanism by which zileuton is effective is in part explained by blocking nitrotyrosination of 5-LO.

    Topics: Animals; Blotting, Western; Chromatography, High Pressure Liquid; Dose-Response Relationship, Drug; Female; Hydroxyurea; Leukotriene B4; Lipoxygenase Inhibitors; Nitrates; omega-N-Methylarginine; Precipitin Tests; Proteins; Rats; Rats, Wistar; Tyrosine

2001
Reactive nitrogen and oxygen species attenuate interleukin- 8-induced neutrophil chemotactic activity in vitro.
    The Journal of biological chemistry, 2000, Apr-14, Volume: 275, Issue:15

    Peroxynitrite, formed by the reaction between nitric oxide and superoxide, has been shown to induce protein nitration, which compromises protein function. We hypothesized that peroxynitrite may regulate cytokine function during inflammation. To test this hypothesis, the neutrophil chemotactic activity (NCA) of interleukin-8 (IL-8) incubated with peroxynitrite was evaluated. Peroxynitrite attenuated IL-8 NCA in a dose-dependent manner (p < 0.01) but did not significantly reduce NCA induced by leukotriene B(4) or complement-activated serum. The reducing agents, dithionite, deferoxamine, and dithiothreitol, reversed and exogenous L-tyrosine abrogated the peroxynitrite-induced NCA inhibition. Papa-NONOate [N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium-1, 2-dialase or sodium nitroprusside, NO donors, or a combination of xanthine and xanthine oxidase to generate superoxide did not show an inhibitory effect on NCA induced by IL-8. In contrast, small amounts of SIN-1, a peroxynitrite generator, caused a concentration-dependent inhibition of NCA by IL-8. Consistent with its capacity to reduce NCA, peroxynitrite treatment reduced IL-8 binding to neutrophils. Nitrotyrosine was detected in the IL-8 incubated with peroxynitrite by enzyme-linked immunosorbent assay. These findings are consistent with nitration of tyrosine by peroxynitrite with subsequent inhibition of IL-8 binding to neutrophils and a reduction in NCA and suggest that oxidants may play an important role in regulation of IL-8-induced neutrophil chemotaxis.

    Topics: Chemotaxis, Leukocyte; Humans; Interleukin-8; Leukotriene B4; Molsidomine; Neutrophils; Nitrates; Nitric Oxide Donors; Tyrosine

2000
Effects of reactive oxygen and nitrogen metabolites on RANTES- and IL-5-induced eosinophil chemotactic activity in vitro.
    The American journal of pathology, 1999, Volume: 155, Issue:2

    Eosinophils and increased production of nitric oxide (NO) and superoxide, components of peroxynitrite, have been implicated in the pathogenesis of a number of allergic disorders including asthma. Peroxynitrite induced protein nitration may compromise enzyme and protein function. We hypothesized that peroxynitrite may modulate eosinophil migration by modulating chemotactic cytokines. To test this hypothesis, the eosinophil chemotactic responses of regulated on activation, normal T cell expressed and secreted (RANTES) and interleukin (IL)-5 incubated with and without peroxynitrite were evaluated. Peroxynitrite-attenuated RANTES and IL-5 induced eosinophil chemotactic activity (ECA) in a dose-dependent manner (P < 0.05) but did not attenuate leukotriene B4 or complement-activated serum ECA. The reducing agents deferoxamine and dithiothreitol reversed the ECA inhibition by peroxynitrite, and exogenous L-tyrosine abrogated the inhibition by peroxynitrite. PAPA-NONOate, a NO donor, or superoxide generated by lumazine or xanthine and xanthine oxidase, did not show an inhibitory effect on ECA. The peroxynitrite generator, 3-morpholinosydnonimine, caused a concentration-dependent inhibition of ECA. Peroxynitrite reduced RANTES and IL-5 binding to eosinophils and resulted in nitrotyrosine formation. These findings are consistent with nitration of tyrosine by peroxynitrite with subsequent inhibition of RANTES and IL-5 binding to eosinophils and suggest that peroxynitrite may play a role in regulation of eosinophil chemotaxis.

    Topics: Chemokine CCL5; Chemotaxis; Deferoxamine; Dithiothreitol; Dose-Response Relationship, Drug; Eosinophils; Humans; Hydrazines; Interleukin-5; Leukotriene B4; Molsidomine; Nitrates; Nitric Oxide; Nitrogen; Pteridines; Reactive Oxygen Species; Superoxides; Tyrosine; Xanthine

1999
Effects of reactive oxygen and nitrogen metabolites on MCP-1-induced monocyte chemotactic activity in vitro.
    The American journal of physiology, 1999, Volume: 277, Issue:3

    Peroxynitrite, an oxidant generated by the interaction between superoxide and nitric oxide (NO), can nitrate tyrosine residues, resulting in compromised protein function. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that attracts monocytes and has a tyrosine residue critical for function. We hypothesized that peroxynitrite would alter MCP-1 activity. Peroxynitrite attenuated MCP-1-induced monocyte chemotactic activity (MCA) in a dose-dependent manner (P < 0.05) but did not attenuate leukotriene B4 or complement-activated serum MCA. The reducing agents dithionite, deferoxamine, and dithiothreitol reversed the MCA inhibition by peroxynitrite, and exogenous L-tyrosine abrogated the inhibition by peroxynitrite. PAPA-NONOate, an NO donor, or superoxide generated by xanthine and xanthine oxidase did not show an inhibitory effect on MCA induced by MCP-1. The peroxynitrite generator 3-morpholinosydnonimine caused a concentration-dependent inhibition of MCA by MCP-1. Peroxynitrite reduced MCP-1 binding to monocytes and resulted in nitrotyrosine formation. These findings are consistent with nitration of tyrosine by peroxynitrite, with subsequent inhibition of MCP-1 binding to monocytes, and suggest that peroxynitrite may play a role in regulation of MCP-1-induced monocyte chemotaxis.

    Topics: Blood Physiological Phenomena; Cells, Cultured; Chemokine CCL2; Chemotaxis, Leukocyte; Dose-Response Relationship, Drug; Humans; Leukotriene B4; Monocytes; Nitrates; Nitrogen; Oxidants; Reactive Oxygen Species; Reducing Agents; Superoxides; Tyrosine

1999
Role of IL-6 in the pleurisy and lung injury caused by carrageenan.
    Journal of immunology (Baltimore, Md. : 1950), 1999, Nov-01, Volume: 163, Issue:9

    In the present study we used IL-6 knockout mice (IL-6KO) to evaluate the role of IL-6 in the inflammatory response caused by injection of carrageenan into the pleural space. Compared with carrageenan-treated IL-6 wild-type (IL-6WT) mice, carrageenan-treated IL-6KO mice exhibited a reduced degree of pleural exudation and polymorphonuclear cell migration. Lung myeloperoxidase activity and lipid peroxidation were significantly reduced in IL-6KO mice compared with those in IL-6WT mice treated with carrageenan. Immunohistochemical analysis for nitrotyrosine and poly(A)DP-ribose polymerase revealed a positive staining in lungs from carrageenan-treated IL-6WT mice. No positive staining for nitrotyrosine or PARS was found in the lungs of the carrageenan-treated IL-6KO mice. Staining of lung tissue sections obtained from carrageenan-treated IL-6WT mice with an anti-cyclo-oxygenase-2 Ab showed a diffuse staining of the inflamed tissue. Furthermore, expression of inducible nitric oxide synthase was found mainly in the macrophages of the inflamed lungs from carrageenan-treated IL-6WT mice. The intensity and degree of the staining for cyclo-oxygenase-2 and inducible nitric oxide synthase were markedly reduced in tissue sections obtained from carrageenan-treated IL-6KO mice. Most notably, the degree of lung injury caused by carrageenan was also reduced in IL-6KO mice. Treatment of IL-6WT mice with anti-IL-6 (5 microg/day/mouse at 24 and 1 h before carrageenan treatment) also significantly attenuated all the above indicators of lung inflammation. Taken together, our results clearly demonstrate that IL-6KO mice are more resistant to the acute inflammation of the lung caused by carrageenan injection into the pleural space than the corresponding WT mice.

    Topics: Animals; Carrageenan; Cells, Cultured; Cytokines; Dinoprostone; DNA Damage; Enzyme Induction; Interleukin-6; Leukotriene B4; Lung; Macrophages; Male; Malondialdehyde; Mice; Mice, Knockout; Nitrates; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Peroxidase; Pleura; Pleurisy; Poly(ADP-ribose) Polymerases; Prostaglandin-Endoperoxide Synthases; Prostaglandins F; Tyrosine

1999