leptin has been researched along with naringin* in 2 studies
2 other study(ies) available for leptin and naringin
Article | Year |
---|---|
Protective effect of naringin on small intestine injury in NSAIDs related enteropathy by regulating ghrelin/GHS-R signaling pathway.
To investigate the mechanism of Ghrelin/GHS-R signaling pathway in small intestine injury induced by NSAIDs related enteropathy. To clarify the mechanism network of intestinal mucosal repair with naringin as a new therapeutic method.. Naringin was used as the intervention method, observed the damage of small intestinal mucosa and detected the expression of ghrelin, GHS-R, leptin and TNF-α by electron microscopy, HE staining and immunohistochemistry.. Compared with the control group, the weight of rats in the model group decreased, the thickness of intestinal mucosa became thinner, the structure of intestinal mucosa changed, the expression of ghrelin, GHS-R and leptin decreased, the expression of TNF-α increased. Compared with the model group, the intestinal mucosa of the treatment group was repaired, the expression of ghrelin, GHS-R and leptin was increased, and the expression TNF-α was decreased.. The mechanism of intestinal mucosal damage in patients with NSAIDs related enteropathy may be related to the decreased expression of ghrelin, GHS-R and leptin, and promotion of TNF-α secretion. Naringin can effectively promote the secretion of ghrelin and leptin, the expression of GSH-R, and inhibit the release of TNF-α, so as to repair intestinal mucosa naringin will become a new method to treat and prevent NSAIDs related intestinal diseases. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Flavanones; Ghrelin; Intestinal Diseases; Intestine, Small; Leptin; Male; Protective Agents; Rats; Rats, Sprague-Dawley; Receptors, Ghrelin; Tumor Necrosis Factor-alpha | 2021 |
Inhibition of the leptin-induced activation of the p38 MAPK pathway contributes to the protective effects of naringin against high glucose-induced injury in H9c2 cardiac cells.
Leptin, a product of the obese gene, has been reported to contribute to the development of cardiomyocyte hypertrophy in patients with diabetes and to activate the p38 mitogen-activated protein kinase (MAPK) pathway in cardiomyocytes. In this study, we demonstrate that naringin, a citrus flavonone, protects cardiomyoblasts (H9c2 cells) against high glucose (HG)-induced apoptosis by modulating the activation of the p38 MAPK pathway. We investigated the hypothesis that naringin prevents HG-induced injury by inhibiting the leptin-induced activation of the p38 MAPK pathway in H9c2 cells. Our results demonstrated that the exposure of H9c2 cells to HG (35 mmol/l) for a 24 h markedly upregulated the expression levels of both leptin and leptin receptors. However, the increase in the expression levels of leptin and leptin receptors was greatly attenuated by treatment of the H9c2 cells with 80 µmol/l naringin 2 h prior to exposure to HG. In addition, treatment of the cells with 50 ng/ml leptin antagonist (LA) for 24 h prior to exposure to HG markedly ameliorated the increased expression of phosphorylated (p)-p38 MAPK induced by HG. Of note, pre-treatment of the cells with either 80 µmol/l naringin or 50 ng/ml LA markedly inhibited the HG-induced injury, leading to an increase in cell viability and a decrease in the total number of apoptotic cells, preventing reactive oxygen species (ROS) generation, as well as the dissipation of mitochondrial membrane potential (MMP). In conclusion, the findings of the present study provide the first evidence that the leptin-induced activation of the p38 MAPK pathway is involved in HG-induced injury, including cytotoxicity, apoptosis, ROS generation and the dissipation of MMP in H9c2 cardiac cells. Our data demonstrate that naringin protects cardiac cells against HG-induced injury by inhibiting the leptin-induced activation of the p38 MAPK pathway. Topics: Animals; Apoptosis; Cardiotonic Agents; Cell Survival; Flavanones; Gene Expression Regulation; Glucose; Humans; Leptin; Myoblasts, Cardiac; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Rats; Reactive Oxygen Species; Signal Transduction | 2014 |