leptin and fucoxanthin

leptin has been researched along with fucoxanthin* in 5 studies

Reviews

1 review(s) available for leptin and fucoxanthin

ArticleYear
Fucoxanthin and lipid metabolism: A minireview.
    Nutrition, metabolism, and cardiovascular diseases : NMCD, 2015, Volume: 25, Issue:10

    Accumulating data suggest that food supplementation with seaweeds which traditionally are an important part of food culture in South-East Asian countries might lead to essential health benefits. In this short review, we summarize findings from experimental studies on the effects of fucoxanthin (a carotenoid derived from brown seaweeds) on lipid metabolism, adiposity, and related conditions and discuss the possible underlying mechanisms.. Supplementation of fucoxanthin or its derivatives consistently attenuated body and visceral fat weight gain, lipid accumulation in the liver, decreases insulin resistance, and improves the plasma lipid profile in rodents fed a high-fat diet. It should however be noted that in diabetic/obese KK-Ay mice with genetically compromised insulin signaling, fucoxanthin might increase the plasma levels of cholesterol and low-density lipoproteins. The anti-obesity effects of fucoxanthin are apparently mediated by the hormones leptin and adiponectin through their common target AMK-activated protein kinase, resulting in downregulation of lipogenic enzymes and upregulation of lipolytic enzymes. Fucoxanthin also suppresses adipocyte differentiation and induces the expression of uncoupling proteins in visceral adipose tissue.. The results of experimental studies suggest that consumption of fucoxanthin and its derivatives as nutritional supplements is a promising option for prevention and treatment of obesity and a wide variety of related pathologies, including metabolic syndrome, type 2 diabetes, and heart disease. Yet, clinical trials are warranted to assess a therapeutic value of fucoxanthin.

    Topics: Adipocytes; Adiponectin; Animals; Anti-Obesity Agents; Cell Differentiation; Diet, High-Fat; Humans; Ion Channels; Leptin; Lipid Metabolism; Lipids; Lipogenesis; Lipolysis; Liver; Mice; Mitochondrial Proteins; Rats; Uncoupling Protein 1; Weight Gain; Xanthophylls

2015

Trials

1 trial(s) available for leptin and fucoxanthin

ArticleYear
Fucoidan and Fucoxanthin Attenuate Hepatic Steatosis and Inflammation of NAFLD through Modulation of Leptin/Adiponectin Axis.
    Marine drugs, 2021, Mar-12, Volume: 19, Issue:3

    Non-alcoholic fatty liver disease (NAFLD) is the emerging cause of chronic liver disease globally and lack of approved therapies. Here, we investigated the feasibility of combinatorial effects of low molecular weight fucoidan and high stability fucoxanthin (LMF-HSFx) as a therapeutic approach against NAFLD. We evaluated the inhibitory effects of LMF-HSFx or placebo in 42 NAFLD patients for 24 weeks and related mechanism in high fat diet (HFD) mice model and HepaRG

    Topics: Adiponectin; Adult; Aged; Animals; Cell Line; Diet, High-Fat; Disease Models, Animal; Drug Therapy, Combination; Humans; Inflammation; Insulin Resistance; Leptin; Lipid Metabolism; Liver Cirrhosis; Male; Mice; Mice, Inbred C57BL; Mice, Nude; Middle Aged; Non-alcoholic Fatty Liver Disease; Polysaccharides; Xanthophylls; Young Adult

2021

Other Studies

3 other study(ies) available for leptin and fucoxanthin

ArticleYear
Down-regulation of hepatic stearoyl-CoA desaturase-1 expression by fucoxanthin via leptin signaling in diabetic/obese KK-A(y) mice.
    Lipids, 2013, Volume: 48, Issue:5

    Stearoyl-coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that catalyzes the biosynthesis of monounsaturated fatty acids from saturated fatty acids. Recently, SCD1 down-regulation has been implicated in the prevention of obesity, and the improvement of insulin and leptin sensitivity. In this study, we examined the effect of fucoxanthin, a marine carotenoid, on hepatic SCD1 in obese mouse models of hyperleptinemia KK-A(y) and leptin-deficiency ob/ob. In KK-A(y) mice, providing a diet containing 0.2 % fucoxanthin for 2 weeks markedly suppressed SCD1 mRNA and protein expressions in the liver. The fatty acid composition of liver lipids was also affected by an observed decrease in the ratio of oleic acid to stearic acid. Furthermore, serum leptin levels were significantly decreased in hyperleptinemia KK-A(y) mice after 2 weeks of fucoxanthin feeding. However, the suppressive effects of fucoxanthin on hepatic SCD1 and body weight gain were not observed in ob/ob mice. These results show that fucoxanthin down-regulates SCD1 expression and alters fatty acid composition of the liver via regulation of leptin signaling in hyperleptinemia KK-A(y) mice but not in leptin-deficient ob/ob mice.

    Topics: Animals; Blood Glucose; Down-Regulation; Fatty Acids; Female; Leptin; Liver; Mice; Mice, Obese; Obesity; RNA, Messenger; Seaweed; Signal Transduction; Stearoyl-CoA Desaturase; Weight Gain; Xanthophylls

2013
Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats.
    Archives of biochemistry and biophysics, 2012, Mar-01, Volume: 519, Issue:1

    The present study investigated the effects of combined fucoxanthin (Fc) and conjugated linoleic acid (CLA) on high-fat diet-induced obese rats. Thirty five rats were divided into four groups, fed a high-fat diet (Control, 15% fat, wt/wt), supplemented with low Fc (FCL, 0.083 mg/kg/bw), high Fc (FCH, 0.167 mg/kg/bw) and FCL (0.083 mg/kg/bw) plus CLA (0.15 g/kg/bw) (FCL+CLA) for 52 d. Body weight and white adipose tissue (WAT) weight were significantly suppressed in FCL+CLA group than those in control group. WAT weight was also markedly attenuated in FCL and FCH groups. Accumulation of hepatic lipid droplets and the perirenal adipocyte size of FCL, FCH and FCL+CLA groups were diminished compared to control group. Serum total cholesterol level in FCH group, triacylglycerol and leptin levels in FCL, FCH and FCL+CLA groups, and glucose concentration in FCH and FCL+CLA groups were significantly decreased than those in control group. The mRNA expression of adiponectin, adipose triacylglycerol lipase, carnitine palmitoyltransferase 1A was remarkably up-regulated in FCL, FCH and FCL+CLA groups. These results suggest that Fc and FCL+CLA could reduce serum levels of triacylglycerol, glucose and leptin, and FCL+CLA could exert anti-obesity effects by regulating mRNA expression of enzymes related to lipid metabolism in WAT of diet-induced obesity rats.

    Topics: Adipocytes; Adiponectin; Adipose Tissue, White; Animals; Blood Glucose; Body Weight; Carnitine O-Palmitoyltransferase; Cholesterol; Diet, High-Fat; Dietary Fats; Gene Expression; Leptin; Linoleic Acids, Conjugated; Lipase; Lipid Metabolism; Liver; Male; Obesity; Rats; Rats, Sprague-Dawley; Triglycerides; Xanthophylls

2012
Effect of medium-chain triacylglycerols on anti-obesity effect of fucoxanthin.
    Journal of oleo science, 2007, Volume: 56, Issue:12

    Dietary effects of medium-chain triacylglycerols (MCT) and fucoxanthin (Fc) on abdominal fat weight were determined using KK-Ay obese mouse. Experimental diet contained MCT(0.9%), Fc (0.1%), or MCT (0.9%) +Fc (0.1%). The abdominal fat weight of mice fed with Fc was significantly lower than that of mice fed with MCT. Uncoupling protein 1 (UCP1), a key molecule for metabolic thermogenesis, was clearly expressed in the white adipose tissue (WAT) of mice fed Fc, but little expression in that of the mice fed MCT. The anti-obesity effect of Fc was increased by mixing Fc with MCT. This increase would be due to the increase in the absorption rate of Fc by MCT.

    Topics: Abdominal Fat; Adipose Tissue; Animals; Dietary Fats; Female; Intestinal Absorption; Leptin; Mice; Obesity; Triglycerides; Xanthophylls

2007