leptin and cinnamaldehyde

leptin has been researched along with cinnamaldehyde* in 2 studies

Other Studies

2 other study(ies) available for leptin and cinnamaldehyde

ArticleYear
Cinnamaldehyde Ameliorates Diet-Induced Obesity in Mice by Inducing Browning of White Adipose Tissue.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2017, Volume: 42, Issue:4

    Obesity has become a major health concern with few effective medications. Cinnamaldehyde (CA) has been reported to exhibit anti-diabetic and anti-inflammatory properties. However, whether CA shows anti-obesity activity remains unknown. Therefore, the present study aimed to investigate the potential anti-obesity effects of CA on mice fed a high-fat diet (HFD) and to explore the possible mechanisms involved.. Male C57BL/6J mice fed an HFD for 12 weeks were supplemented with CA (40 mg/kg/day) via gavage for an additional 8 weeks. Mice fed a standard diet were used as normal controls.. The results revealed that CA treatment decreased body weight, fat mass, food intake, and serum lipid, free fatty acid and leptin levels. CA administration also improved insulin sensitivity in HFD-induced obese mice. Additionally, CA inhibited the hypertrophy of adipose tissue and induced browning of white adipose tissue. Uncoupling protein 1 (UCP1) was expressed in white adipose tissue after the oral administration of CA. Furthermore, CA enhanced the expression of the peroxisome proliferator-activated receptor γ (PPARγ), PR domain-containing 16 (PRDM16) and PPARγ coactivator 1α (PGC-1α) proteins in both brown and white adipose tissues.. The results suggest that CA exhibits therapeutic potency against obesity by inducing the browning of white adipose tissue in HFD-fed mice.

    Topics: Acrolein; Adipose Tissue, Brown; Adipose Tissue, White; Administration, Oral; Animals; Anti-Obesity Agents; Body Weight; Diet, High-Fat; DNA-Binding Proteins; Eating; Energy Metabolism; Fatty Acids, Nonesterified; Gene Expression Regulation; Insulin Resistance; Leptin; Male; Mice; Mice, Inbred C57BL; Obesity; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; PPAR gamma; Transcription Factors; Uncoupling Protein 1

2017
Cinnamaldehyde potentially attenuates gestational hyperglycemia in rats through modulation of PPARγ, proinflammatory cytokines and oxidative stress.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2017, Volume: 88

    Cinnamon has a history of use for medicinal purposes and its major benefits have been linked to cinnamaldehyde. The present study aimed to investigate the hypoglycemic action of cinnamaldehyde against fatty-sucrosed diet/streptozotocin (FSD/STZ)-rat model of gestational diabetes. Female albino rats were divided into three groups. Group I fed with normal diet (ND) while group II and III were fed with FSD for eight weeks (five weeks pre-gestational and three weeks gestational). Rats of group III were administered with a daily oral dose of 20mg/kg cinnamaldehyde one week before mating onward. At the 7th day of gestation, FSD-fed rats were injected intraperitoneally with STZ (25mg/kg b.wt.) to induce gestational diabetes. Pre-mating treatment of cinnamaldehyde controls hyperphagia and glucose intolerance during the gestational period than in diabetic rats. It also reduced levels of fructosamine, total cholesterols, triglycerides, leptin, tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA) and nitric oxide (NO), while it significantly increased levels of high-density lipoprotein (HDL)-cholesterol, adiponectin, liver glycogen, reduced glutathione (GSH) and catalase activity at term pregnancy. In addition, cinnamaldehyde administration up-regulated the mRNA expression of peroxisome proliferated activated receptor-gamma (PPARγ) and also ameliorated the number of viable fetuses, implantation loss sites, fetal glucose and insulin levels. In conclusion, cinnamaldehyde has safe hypoglycemic action on gestational diabetes by potentiating insulin secretion and sensitivity through activating the antioxidant defense system, suppressing pro-inflammatory cytokines production, upregulating PPARγ gene expression and alleviating the reproductive performance.

    Topics: Acrolein; Adipose Tissue; Animals; Antioxidants; Biomarkers; Blood Glucose; Body Weight; Cholesterol; Cytokines; Diabetes, Gestational; Feeding Behavior; Female; Fetus; Fructosamine; Glucose Tolerance Test; Glycogen; Hyperglycemia; Inflammation Mediators; Insulin; Leptin; Liver; Oxidative Stress; PPAR gamma; Pregnancy; Pregnancy Outcome; Rats; RNA, Messenger; Triglycerides

2017