leptin has been researched along with aspalathin* in 2 studies
2 other study(ies) available for leptin and aspalathin
Article | Year |
---|---|
The Transcription Profile Unveils the Cardioprotective Effect of Aspalathin against Lipid Toxicity in an In Vitro H9c2 Model.
Aspalathin, a C-glucosyl dihydrochalcone, has previously been shown to protect cardiomyocytes against hyperglycemia-induced shifts in substrate preference and subsequent apoptosis. However, the precise gene regulatory network remains to be elucidated. To unravel the mechanism and provide insight into this supposition, the direct effect of aspalathin in an isolated cell-based system, without the influence of any variables, was tested using an H9c2 cardiomyocyte model. Cardiomyocytes were exposed to high glucose (33 mM) for 48 h before post-treatment with or without aspalathin. Thereafter, RNA was extracted and RT2 PCR Profiler Arrays were used to profile the expression of 336 genes. Results showed that, 57 genes were differentially regulated in the high glucose or high glucose and aspalathin treated groups. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis revealed lipid metabolism and molecular transport as the biological processes altered after high glucose treatment, followed by inflammation and apoptosis. Aspalathin was able to modulate key regulators associated with lipid metabolism (Adipoq, Apob, CD36, Cpt1, Pparγ, Srebf1/2, Scd1 and Vldlr), insulin resistance (Igf1, Akt1, Pde3 and Map2k1), inflammation (Il3, Il6, Jak2, Lepr, Socs3, and Tnf13) and apoptosis (Bcl2 and Chuk). Collectively, our results suggest that aspalathin could reverse metabolic abnormalities by activating Adipoq while modulating the expression of Pparγ and Srebf1/2, decreasing inflammation via Il6/Jak2 pathway, which together with an observed increased expression of Bcl2 prevents myocardium apoptosis. Topics: Animals; Apoptosis; Cardiotonic Agents; Cell Line; Chalcones; Cytokines; Diabetes Mellitus, Experimental; Fatty Acids; Gene Expression Profiling; Gene Expression Regulation; Insulin Resistance; Leptin; Lipid Metabolism; Lipids; Male; Mice; Mice, Knockout; Myocytes, Cardiac; Plant Extracts; Rats; Signal Transduction; Transcriptome | 2017 |
Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice.
Although several researches have demonstrated that rooibos extract has hypoglycemic effect, the role of aspalathin, a main polyphenol in the extract, remains unclear. Our aims were to find specific mechanisms for anti-diabetic action of aspalathin employing a rat skeletal muscle-derived cell line (L6 myocytes) and a rat-derived pancreatic β-cell line (RIN-5F cells) and to investigate its effect in type 2 diabetic model ob/ob mice.. We investigated in vitro the effect of aspalathin on the glucose metabolism through the studies on molecular mechanisms of glucose uptake using cultured L6 myotubes. We also measured the antioxidative ability of aspalathin against reactive oxygen species (ROS) generated by artificial advanced glycation end product (AGE) in RIN-5F cells. In vivo, ob/ob mice were fed 0.1 % aspalathin-containing diet for 5 weeks, and the effect of aspalathin on fasting blood glucose level, glucose intolerance, and hepatic gene expression was studied.. Aspalathin dose dependently increased glucose uptake by L6 myotubes and promoted AMP-activated protein kinase (AMPK) phosphorylation. Aspalathin enhanced GLUT4 translocation to plasma membrane in L6 myoblasts and myotubes. In RIN-5F cells, aspalathin suppressed AGE-induced rises in ROS. In vivo, aspalathin significantly suppressed the increase in fasting blood glucose levels and improved glucose intolerance. Furthermore, aspalathin decreased expression of hepatic genes related to gluconeogenesis and lipogenesis.. Hypoglycemic effect of aspalathin is related to increased GLUT4 translocation to plasma membrane via AMPK activation. In addition, aspalathin reduces the gene expression of hepatic enzymes related to glucose production and lipogenesis. These results strongly suggest that aspalathin has anti-diabetic potential. Topics: Adiponectin; AMP-Activated Protein Kinases; Animals; Blood Glucose; Body Weight; Cell Line; Chalcones; Cholesterol; Diabetes Mellitus, Experimental; Gluconeogenesis; Glucose Intolerance; Glucose Transporter Type 4; Glycogenolysis; Hyperglycemia; Hypoglycemic Agents; Insulin; Insulin-Secreting Cells; Leptin; Lipogenesis; Mice; Mice, Obese; Muscle Fibers, Skeletal; Muscle, Skeletal; Phosphorylation; Rats; Reactive Oxygen Species | 2013 |