lavendustin b has been researched along with genistein in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 3 (60.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 1 (20.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Chang, CJ; Geahlen, RL | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Fujii, E; Irie, K; Muraki, T; Ogawa, A; Ohba, K; Yamakawa, M; Yoshioka, T | 1 |
Browning, MD; Dudek, E; Lei, S; Lu, WY; MacDonald, JF; Orser, BA; Xiong, ZG | 1 |
Golde, DW; Núñez-Alarcón, J; Reyes, AM; Rivas, CI; Slebe, JC; Strobel, P; Velásquez, FV; Vera, JC; Zhang, RH | 1 |
1 review(s) available for lavendustin b and genistein
Article | Year |
---|---|
Protein-tyrosine kinase inhibition: mechanism-based discovery of antitumor agents.
Topics: Animals; Antineoplastic Agents; Drug Screening Assays, Antitumor; Humans; Protein-Tyrosine Kinases | 1992 |
4 other study(ies) available for lavendustin b and genistein
Article | Year |
---|---|
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Role of nitric oxide, prostaglandins and tyrosine kinase in vascular endothelial growth factor-induced increase in vascular permeability in mouse skin.
Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Capillary Permeability; Cycloheximide; Dinoprostone; Endothelial Growth Factors; Enzyme Inhibitors; Extravasation of Diagnostic and Therapeutic Materials; Genistein; Guanidines; Indomethacin; Lymphokines; Male; meta-Aminobenzoates; Mice; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Nitrobenzenes; Phenols; Prostaglandins; Protein-Tyrosine Kinases; Salicylates; Skin; Stereoisomerism; Sulfonamides; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factors | 1997 |
G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors.
Topics: Alkaloids; Amino Acid Sequence; Animals; Benzophenanthridines; Cells, Cultured; Enzyme Activation; Enzyme Inhibitors; Genistein; GTP-Binding Proteins; Isoflavones; Lysophospholipids; meta-Aminobenzoates; Mice; Mice, Knockout; Microinjections; Molecular Sequence Data; Muscarine; Nerve Tissue Proteins; Neuronal Plasticity; Oocytes; Patch-Clamp Techniques; Phenanthridines; Phenols; Phosphorylation; Protein Kinase C; Protein Processing, Post-Translational; Proto-Oncogene Proteins pp60(c-src); Pyramidal Cells; Rats; Rats, Wistar; Receptors, Cell Surface; Receptors, G-Protein-Coupled; Receptors, Lysophosphatidic Acid; Receptors, Muscarinic; Receptors, N-Methyl-D-Aspartate; Salicylates; Signal Transduction; Tetradecanoylphorbol Acetate; Xenopus laevis | 1999 |
Direct inhibition of the hexose transporter GLUT1 by tyrosine kinase inhibitors.
Topics: Adenosine Triphosphate; Animals; Binding, Competitive; CHO Cells; Cinnamates; Cricetinae; Enzyme Inhibitors; Flavonoids; Genistein; Glucose Transporter Type 1; Hexoses; HL-60 Cells; Humans; Isoflavones; meta-Aminobenzoates; Monosaccharide Transport Proteins; Phenols; Protein Binding; Protein-Tyrosine Kinases; Quercetin; Salicylates; Substrate Specificity; Tyrosine; Tyrphostins | 2001 |