latrunculin-a has been researched along with oryzalin* in 5 studies
5 other study(ies) available for latrunculin-a and oryzalin
Article | Year |
---|---|
Chloroplasts alter their morphology and accumulate at the pathogen interface during infection by Phytophthora infestans.
Upon immune activation, chloroplasts switch off photosynthesis, produce antimicrobial compounds and associate with the nucleus through tubular extensions called stromules. Although it is well established that chloroplasts alter their position in response to light, little is known about the dynamics of chloroplast movement in response to pathogen attack. Here, we report that during infection with the Irish potato famine pathogen Phytophthora infestans, chloroplasts accumulate at the pathogen interface, associating with the specialized membrane that engulfs the pathogen haustorium. The chemical inhibition of actin polymerization reduces the accumulation of chloroplasts at pathogen haustoria, suggesting that this process is partially dependent on the actin cytoskeleton. However, chloroplast accumulation at haustoria does not necessarily rely on movement of the nucleus to this interface and is not affected by light conditions. Stromules are typically induced during infection, embracing haustoria and facilitating chloroplast interactions, to form dynamic organelle clusters. We found that infection-triggered stromule formation relies on BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1)-mediated surface immune signaling, whereas chloroplast repositioning towards haustoria does not. Consistent with the defense-related induction of stromules, effector-mediated suppression of BAK1-mediated immune signaling reduced stromule formation during infection. On the other hand, immune recognition of the same effector stimulated stromules, presumably via a different pathway. These findings implicate chloroplasts in a polarized response upon pathogen attack and point to more complex functions of these organelles in plant-pathogen interactions. Topics: Actin Cytoskeleton; Bridged Bicyclo Compounds, Heterocyclic; Chloroplasts; Dinitrobenzenes; Host-Pathogen Interactions; Light; Microscopy, Confocal; Nicotiana; Optical Tweezers; Phytophthora infestans; Plant Diseases; Plant Immunity; Plant Leaves; Plants, Genetically Modified; Reactive Oxygen Species; Sulfanilamides; Thiazolidines | 2021 |
The microtubule cytoskeleton and pollen tube Golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple.
S-RNase is the female determinant of gametophytic self-incompatibility in apple and is usually considered to be the reason for rejection of pollen. In this study, we investigated the role of microtubules (MTs) in internalization of S-RNases by pollen tubes cultured in vitro. The results showed that S-RNase was imported into the pollen tube where it inhibits pollen tube growth, and that S-RNase is co-localized with the Golgi vesicle during the internalization process. Moreover, MT depolymerization is observed following accumulation of S-RNases in the pollen cytosol. On the other hand, S-RNase was prevented from entering the pollen tube when the pollen was treated with the actin filament (AF) inhibitor latrunculin A (LatA), the MT inhibitor oryzalin, or the MT stabilizer taxol at subtoxic concentrations. These hindered the construction of the MT, with pollen tubes capable of growth under these conditions. Pollen tubes showed improved growth in self-pollinated styles that were pre-treated with taxol. This suggests that cytoskeleton antagonists can prevent S-RNase-mediated inhibition of pollen tubes in vivo by blocking S-RNase internalization. These results suggest that an intact and dynamic cytoskeleton is required for the in vitro internalization of S-RNase, as shown by the effects of various cytoskeleton inhibitors. S-RNase internalization takes place via a membrane/cytoskeleton-based Golgi vesicle system, which can also affect self-incompatibility in apple. Topics: Blotting, Western; Bridged Bicyclo Compounds, Heterocyclic; Cells, Cultured; Cytoplasm; Cytoplasmic Vesicles; Cytoskeleton; Dinitrobenzenes; Endocytosis; Golgi Apparatus; Malus; Microscopy, Confocal; Microtubules; Paclitaxel; Pollen; Pollen Tube; Ribonucleases; Self-Incompatibility in Flowering Plants; Sulfanilamides; Thiazolidines | 2014 |
Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs.
Plant cells expand by exocytosis of wall material contained in Golgi-derived vesicles. We examined the role of local instability of the actin cytoskeleton in specifying the exocytosis site in Arabidopsis root hairs. During root hair growth, a specific actin cytoskeleton configuration is present in the cell's subapex, which consists of fine bundles of actin filaments that become more and more fine toward the apex, where they may be absent. Pulse application of low concentrations of the actin-depolymerizing drugs cytochalasin D and latrunculin A broadened growing root hair tips (i.e., they increased the area of cell expansion). Interestingly, recovery from cytochalasin D led to new growth in the original growth direction, whereas in the presence of oryzalin, a microtubule-depolymerizing drug, this direction was altered. Oryzalin alone, at the same concentration, had no influence on root hair elongation. These results represent an important step toward understanding the spatial and directional regulation of root hair growth. Topics: Actins; Arabidopsis; Bridged Bicyclo Compounds, Heterocyclic; Cell Division; Cytochalasin D; Cytoskeleton; Dinitrobenzenes; Dose-Response Relationship, Drug; Microtubules; Nucleic Acid Synthesis Inhibitors; Plant Roots; Sulfanilamides; Thiazoles; Thiazolidines | 2003 |
Microtubules, but not actin filaments, drive daughter cell budding and cell division in Toxoplasma gondii.
We have used drugs to examine the role(s) of the actin and microtubule cytoskeletons in the intracellular growth and replication of the intracellular protozoan parasite, Toxoplasma gondii. By using a 5 minute infection period and adding the drugs shortly after entry we can treat parasites at the start of intracellular development and 6-8 hours prior to the onset of daughter cell budding. Using this approach we found, somewhat surprisingly, that reagents that perturb the actin cytoskeleton in different ways (cytochalasin D, latrunculin A and jasplakinolide) had little effect on parasite replication although they had the expected effects on the host cells. These actin inhibitors did, however, disrupt the orderly turnover of the mother cell organelles leading to the formation of a large residual body at the posterior end of each pair of budding parasites. Treating established parasite cultures with the actin inhibitors blocked ionophore-induced egression of tachyzoites from the host cells, demonstrating that intracellular parasites were susceptible to the effects of these inhibitors. In contrast, the anti-microtubule drugs oryzalin and taxol, and to a much lesser extent nocodazole, which affect microtubule dynamics in different ways, blocked parasite replication by disrupting the normal assembly of the apical conoid and the microtubule inner membrane complex (IMC) in the budding daughter parasites. Centrosome replication and assembly of intranuclear spindles, however, occurred normally. Thus, daughter cell budding per se is dependent primarily on the parasite microtubule system and does not require a dynamic actin cytoskeleton, although disruption of actin dynamics causes problems in the turnover of parasite organelles. Topics: Actins; Animals; Bridged Bicyclo Compounds, Heterocyclic; Calcimycin; Cell Division; Cells, Cultured; Cytochalasin D; Cytoskeleton; Dinitrobenzenes; Fibroblasts; Growth Inhibitors; Humans; Ionophores; Microscopy, Electron; Microtubules; Nocodazole; Organelles; Paclitaxel; Sulfanilamides; Thiazoles; Thiazolidines; Toxoplasma | 2000 |
Diatom gliding is the result of an actin-myosin motility system.
Diatoms are a group of unicellular microalgae that are encased in a highly ornamented siliceous cell wall, or frustule. Pennate diatoms have bilateral symmetry and many genera possess an elongated slit in the frustule called the raphe, a feature synonymous with their ability to adhere and glide over a substratum, a process little understood. We have used cytoskeleton-disrupting drugs to investigate the roles of actin, myosin, and microtubules in diatom gliding or motility. No effect on diatom gliding was observed using the cytochalasins, known actin inhibitors, or the microtubule-inhibitors oryzalin and nocodazole. The latrunculins are a new group of anti-actin drugs, and we show here that they are potent inhibitors of diatom gliding, resulting in the complete disassociation of the raphe-associated actin cables. The recovery of actin staining and motility following latrunculin treatment was extremely fast. Cells exposed to latrunculin for 12 h recovered full function and actin staining within 5 sec of the drug being removed, demonstrating that the molecular components required for this motility system are immediately available. Butanedione monoxime (BDM), a known myosin inhibitor, also reversibly inhibited diatom gliding in a manner similar to the latrunculins. This work provides evidence that diatom gliding is based on an actin/myosin motility system. Topics: Actin Cytoskeleton; Actins; Bridged Bicyclo Compounds, Heterocyclic; Cytochalasins; Diacetyl; Diatoms; Dinitrobenzenes; Enzyme Inhibitors; Microtubules; Movement; Myosins; Nocodazole; Sulfanilamides; Thiazoles; Thiazolidines | 1999 |