Page last updated: 2024-09-05

lapatinib and sorafenib

lapatinib has been researched along with sorafenib in 52 studies

Compound Research Comparison

Studies
(lapatinib)
Trials
(lapatinib)
Recent Studies (post-2010)
(lapatinib)
Studies
(sorafenib)
Trials
(sorafenib)
Recent Studies (post-2010) (sorafenib)
1,9193051,4426,5207305,251

Protein Interaction Comparison

ProteinTaxonomylapatinib (IC50)sorafenib (IC50)
Aurora kinase AHomo sapiens (human)3.8
Receptor-interacting serine/threonine-protein kinase 2Homo sapiens (human)3.6
Bile salt export pumpHomo sapiens (human)8.6667
Tyrosine-protein kinase ABL1Homo sapiens (human)0.1
Tyrosine-protein kinase ABL1Mus musculus (house mouse)0.2259
Epidermal growth factor receptorHomo sapiens (human)0.2145
RAF proto-oncogene serine/threonine-protein kinaseHomo sapiens (human)0.1333
Receptor tyrosine-protein kinase erbB-2Homo sapiens (human)0.131
Platelet-derived growth factor receptor betaMus musculus (house mouse)0.1235
Insulin receptorHomo sapiens (human)5.3
Tyrosine-protein kinase LckHomo sapiens (human)0.06
Macrophage colony-stimulating factor 1 receptorHomo sapiens (human)0.0385
Proto-oncogene tyrosine-protein kinase receptor RetHomo sapiens (human)0.026
Hepatocyte growth factor receptorHomo sapiens (human)5.75
Tyrosine-protein kinase HCKHomo sapiens (human)0.53
Platelet-derived growth factor receptor betaHomo sapiens (human)0.1164
Serine/threonine-protein kinase A-RafHomo sapiens (human)0.0087
Mast/stem cell growth factor receptor KitHomo sapiens (human)0.1937
Fibroblast growth factor receptor 1Homo sapiens (human)0.2827
AromataseHomo sapiens (human)0.1269
Proto-oncogene tyrosine-protein kinase SrcHomo sapiens (human)0.39
Serine/threonine-protein kinase B-rafHomo sapiens (human)0.3699
Platelet-derived growth factor receptor alphaHomo sapiens (human)0.427
Vascular endothelial growth factor receptor 1 Homo sapiens (human)0.06
Cyclin-CHomo sapiens (human)0.0663
Mitogen-activated protein kinase 3 Homo sapiens (human)0.0181
Serine/threonine-protein kinase B-raf Mus musculus (house mouse)0.13
Mitogen-activated protein kinase 1Homo sapiens (human)0.1095
Sodium-dependent serotonin transporterRattus norvegicus (Norway rat)0.0011
Bifunctional epoxide hydrolase 2Homo sapiens (human)0.012
Vascular endothelial growth factor receptor 3Homo sapiens (human)0.0191
Vascular endothelial growth factor receptor 3Mus musculus (house mouse)0.1269
Vascular endothelial growth factor receptor 2Mus musculus (house mouse)0.1129
Vascular endothelial growth factor receptor 2Homo sapiens (human)0.1
Receptor-type tyrosine-protein kinase FLT3Homo sapiens (human)0.0348
Casein kinase I isoform alphaHomo sapiens (human)0.25
Cyclin-dependent kinase 8Homo sapiens (human)1.1294
Glycogen synthase kinase-3 betaHomo sapiens (human)5.77
Ephrin type-B receptor 4Homo sapiens (human)0.5442
Fatty-acid amide hydrolase 1Rattus norvegicus (Norway rat)6.1
Cyclin-dependent kinase 6Homo sapiens (human)0.13
Dual specificity mitogen-activated protein kinase kinase 1Homo sapiens (human)3.3
Angiopoietin-1 receptorHomo sapiens (human)0.0032
Tyrosine-protein kinase MerHomo sapiens (human)1.37
Receptor-interacting serine/threonine-protein kinase 1Homo sapiens (human)1.5
Mitogen-activated protein kinase 14Homo sapiens (human)0.6228
Discoidin domain-containing receptor 2Homo sapiens (human)0.0215
Serine/threonine-protein kinase TNNI3KHomo sapiens (human)0.175
Vascular endothelial growth factor receptor 2Danio rerio (zebrafish)2.6
Homeodomain-interacting protein kinase 1Homo sapiens (human)0.1
Homeodomain-interacting protein kinase 4Homo sapiens (human)0.0515
Cyclin-dependent kinase 19Homo sapiens (human)0.206
Homeodomain-interacting protein kinase 2Homo sapiens (human)0.1
Homeodomain-interacting protein kinase 3Homo sapiens (human)0.1
MAP kinase-interacting serine/threonine-protein kinase 2Homo sapiens (human)0.262
Broad substrate specificity ATP-binding cassette transporter ABCG2Homo sapiens (human)3.1

Research

Studies (52)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's11 (21.15)29.6817
2010's33 (63.46)24.3611
2020's8 (15.38)2.80

Authors

AuthorsStudies
Atteridge, CE; Azimioara, MD; Benedetti, MG; Biggs, WH; Carter, TA; Ciceri, P; Edeen, PT; Fabian, MA; Floyd, M; Ford, JM; Galvin, M; Gerlach, JL; Grotzfeld, RM; Herrgard, S; Insko, DE; Insko, MA; Lai, AG; Lélias, JM; Lockhart, DJ; Mehta, SA; Milanov, ZV; Patel, HK; Treiber, DK; Velasco, AM; Wodicka, LM; Zarrinkar, PP1
Atteridge, CE; Campbell, BT; Chan, KW; Ciceri, P; Davis, MI; Edeen, PT; Faraoni, R; Floyd, M; Gallant, P; Herrgard, S; Hunt, JP; Karaman, MW; Lockhart, DJ; Milanov, ZV; Morrison, MJ; Pallares, G; Patel, HK; Pritchard, S; Treiber, DK; Wodicka, LM; Zarrinkar, PP1
Morphy, R1
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ1
Hajduk, PJ; Johnson, EF; Kifle, L; Merta, PJ; Metz, JT; Soni, NB1
Russu, WA; Shallal, HM1
Ciceri, P; Davis, MI; Herrgard, S; Hocker, M; Hunt, JP; Pallares, G; Treiber, DK; Wodicka, LM; Zarrinkar, PP1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Davis, MI; Khan, J; Li, SQ; Patel, PR; Shen, M; Sun, H; Thomas, CJ1
Aleo, MD; Bonin, PD; Luo, Y; Potter, DM; Swiss, R; Will, Y1
Bullock, AN; Canning, P; Choi, S; Cuny, GD; Mohedas, AH; Sanvitale, CE; Wang, Y; Xing, X; Yu, PB1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Aiche, S; Bassermann, F; Becker, W; Canevari, G; Casale, E; Depaolini, SR; Ehrlich, HC; Felder, ER; Feuchtinger, A; Garz, AK; Gohlke, BO; Götze, K; Greif, PA; Hahne, H; Heinzlmeir, S; Helm, D; Huenges, J; Jeremias, I; Kayser, G; Klaeger, S; Koch, H; Koenig, PA; Kramer, K; Kuster, B; Médard, G; Meng, C; Petzoldt, S; Polzer, H; Preissner, R; Qiao, H; Reinecke, M; Reiter, K; Rueckert, L; Ruland, J; Ruprecht, B; Schlegl, J; Schmidt, T; Schneider, S; Schoof, M; Spiekermann, K; Tõnisson, N; Vick, B; Vooder, T; Walch, A; Wilhelm, M; Wu, Z; Zecha, J; Zolg, DP1
Guo, Y; He, J; Li, Y; Liu, M; Liu, Y; Xiao, J; Yu, W; Zhang, Q1
Liu, Y; Xu, Z; Zhao, SJ1
Abuo-Rahma, GEA; Badr, M; Bass, AKA; El-Zoghbi, MS; Mohamed, MFA; Nageeb, EM1
Abdel-Maksoud, MS; Alach, NN; Anbar, HS; El-Gamal, MI; El-Gamal, R; Oh, CH; Sbenati, RM; Shehata, MK; Tarazi, H; Zaraei, SO1
Delabio, LC; Dutra, JP; Hembecker, M; Kita, DH; Moure, VR; Pereira, GDS; Scheiffer, G; Valdameri, G; Zattoni, IF1
Hampton, T1
Force, T; Krause, DS; Van Etten, RA1
Giordano, S; Petrelli, A1
Heinemann, V; Stemmler, HJ1
Becker, M; Börgermann, C; Rose, A; Rübben, H; Vom Dorp, F1
Agulnik, M; Wang, LX1
Decosterd, LA; Duchosal, MA; Haouala, A; Leyvraz, S; Montemurro, M; Ris, HB; Rochat, B; Widmer, N; Zaman, K; Zanolari, B1
Gelderblom, H; Guchelaar, HJ; van Erp, NP1
Akita, H1
Amadori, D; Brigliadori, G; Carloni, S; Fabbri, F; Silvestrini, R; Ulivi, P; Zoli, W1
Berros, JP; Blay, P; Corral, N; Esteban, E; Estrada, E; Fernández, Y; Fonseca, PJ; Fra, J; Izquierdo, M; Lacave, ÁJ; Luque, M; Muriel, C; Pardo, P; Sanmamed, M; Vieitez, JM; Villanueva, N1
Catalano, O; De Giuli, L; Della Porta, MG; Eleuteri, E; Riccardi, A; Tondini, C; Zambelli, A1
Aglietta, M; Capellero, S; Cavalloni, G; Gammaitoni, L; Giordano, S; Migliardi, G; Milani, A; Moggio, A; Montemurro, F; Pecchioni, C; Peraldo-Neia, C; Petrelli, A; Sapino, A; Valabrega, G; Zaccarello, G1
Oberstein, PE; Saif, MW1
Barrière, J; Janus, N; Launay-Vacher, V; Thariat, J1
Bertossi, M; De Sanctis, R; De Vincenzo, F; Di Tommaso, L; Fattuzzo, G; Giordano, L; Lorenzi, E; Mancini, L; Masci, G; Perrino, M; Rimassa, L; Roncalli, MG; Rubino, L; Santoro, A; Simonelli, M; Suter, MB; Zucali, PA; Zuradelli, M1
Andriamanana, I; Duretz, B; Gana, I; Hulin, A1
Escudero-Ortiz, V; Pérez-Ruixo, JJ; Valenzuela, B2
Croft, SL; Sanderson, L; Yardley, V1
Altun, A; Altun, GG; Babacan, N; Bahceci, A; Kacan, SB; Kacan, T; Sarac, B; Seker, MM1
Dent, P; Grant, S; Hamed, HA; Poklepovic, A; Tavallai, S1
Alloisio, M; Fatuzzo, G; Lorenzi, E; Rubino, L; Santoro, A; Simonelli, M; Suter, MB; Zucali, PA1
Chen, YC; Chin, SY; Chou, CL; Jiang, MC; Lee, WR; Liu, KH; Shen, SC; Shih, YH; Tseng, JT1
Bower, M; Erbacher, I; Fortunak, J; Gotham, D; Hill, A; Levi, J; Martin, M; Meldrum, J; Powderly, WG; Shoman, H1
Burns, K; Chau, N; Kichenadasse, G; Knights, KM; Mackenzie, PI; McKinnon, RA; Miners, JO; Rowland, A; Tucker, GT1
Dekker, H; Labots, M; Meijer, GA; Pham, TV; Ruijter, R; Van der Hoeven, JJM; Van der Mijn, JC; Van der Vliet, HJ; Verheul, HMW1
Hino, H; Hiramoto, M; Kazama, H; Lorenzo, A; Miyazawa, K; Moriya, S; Okuma, T; Ota, K; Takano, N; Yokota, A1
Boswell, SA; Erickson, AR; Everley, RA; Haigis, MC; Holton, KM; Jacobson, CA; Maliszewski, L; Palmer, AC; Ringel, AE; Ron-Harel, N; Sheehan, RP; Sorger, PK; Wang, H1
Brors, B; Haibe-Kains, B; Kurilov, R1
Chang, WT; Feng, YH; Lee, K; Liu, PY; Wu, SN1
Cai, N; Cheng, K; Liang, H; Wen, J; Xiong, Y; Zhang, W; Zhang, Y; Zhu, J1
Abbas, SE; Abdelrasheed Allam, H; Farouk, AKBAW; George, RF; Rashwan, E1
Tan, J; Xu, M; Zhong, Z1

Reviews

14 review(s) available for lapatinib and sorafenib

ArticleYear
Selectively nonselective kinase inhibition: striking the right balance.
    Journal of medicinal chemistry, 2010, Feb-25, Volume: 53, Issue:4

    Topics: Animals; Antineoplastic Agents; Drug Design; Drug Discovery; Humans; Protein Binding; Protein Kinase Inhibitors; Structure-Activity Relationship

2010
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016
The association between anti-tumor potency and structure-activity of protein-kinases inhibitors based on quinazoline molecular skeleton.
    Bioorganic & medicinal chemistry, 2019, 02-01, Volume: 27, Issue:3

    Topics: Animals; Antineoplastic Agents; Cell Proliferation; Humans; Neoplasms; Protein Kinase Inhibitors; Protein Kinases; Quinazolines

2019
1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships.
    European journal of medicinal chemistry, 2019, Dec-01, Volume: 183

    Topics: Antineoplastic Agents; Humans; Molecular Structure; Neoplasms; Structure-Activity Relationship; Triazoles

2019
Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors.
    European journal of medicinal chemistry, 2021, Jan-01, Volume: 209

    Topics: Androgen Antagonists; Animals; Antineoplastic Agents; Benzimidazoles; Cyclic Nucleotide Phosphodiesterases, Type 5; Daunorubicin; Doxorubicin; fms-Like Tyrosine Kinase 3; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Molecular Targeted Therapy; Morpholines; Nicotinamide Phosphoribosyltransferase; Nitric Oxide; Pyrimidines; Quinazolines; Structure-Activity Relationship; Transcription Factors

2021
Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators.
    European journal of medicinal chemistry, 2022, Jul-05, Volume: 237

    Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily G, Member 2; Breast Neoplasms; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Female; Humans; Neoplasm Proteins; Neoplastic Stem Cells

2022
Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition.
    Nature reviews. Cancer, 2007, Volume: 7, Issue:5

    Topics: Adaptor Proteins, Signal Transducing; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Benzenesulfonates; Drug Delivery Systems; Enzyme Inhibitors; Heart; Heart Diseases; Humans; Indoles; Lapatinib; Models, Biological; Neoplasms; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-abl; Pyridines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Trastuzumab

2007
From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage.
    Current medicinal chemistry, 2008, Volume: 15, Issue:5

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Benzenesulfonates; Bevacizumab; Cetuximab; Clinical Trials as Topic; Enzyme Inhibitors; Erlotinib Hydrochloride; Gefitinib; Humans; Imatinib Mesylate; Indoles; Lapatinib; Neoplasms; Neovascularization, Pathologic; Niacinamide; Phenylurea Compounds; Piperazines; Piperidines; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Receptor Protein-Tyrosine Kinases; Sorafenib; Sunitinib; Trastuzumab

2008
[Oncology 2008].
    Deutsche medizinische Wochenschrift (1946), 2008, Volume: 133, Issue:25-26

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Bevacizumab; Cetuximab; Combined Modality Therapy; Disease Progression; Epothilones; Humans; Lapatinib; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasms; Niacinamide; Panitumumab; Phenylurea Compounds; Prognosis; Pyridines; Quinazolines; Randomized Controlled Trials as Topic; Sorafenib; Survival Rate

2008
Clinical pharmacokinetics of tyrosine kinase inhibitors.
    Cancer treatment reviews, 2009, Volume: 35, Issue:8

    Topics: Administration, Oral; Antineoplastic Agents; Benzamides; Benzenesulfonates; Biological Availability; Cytochrome P-450 Enzyme System; Dasatinib; Drug Interactions; Erlotinib Hydrochloride; Gefitinib; Humans; Imatinib Mesylate; Indoles; Intestinal Absorption; Lapatinib; Niacinamide; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Thiazoles; Tissue Distribution

2009
[Molecular targeted drugs in the developmental stage: 2) Various molecular targets and therapeutic agents under investigation].
    Nihon Naika Gakkai zasshi. The Journal of the Japanese Society of Internal Medicine, 2009, Aug-10, Volume: 98, Issue:8

    Topics: Antineoplastic Agents; Benzenesulfonates; Drug Delivery Systems; Drug Resistance; ErbB Receptors; Humans; Lapatinib; Niacinamide; Phenylurea Compounds; Pyridines; Quinazolines; Sorafenib; Vascular Endothelial Growth Factors

2009
Predicting and preventing cardiotoxicity in the era of breast cancer targeted therapies. Novel molecular tools for clinical issues.
    Breast (Edinburgh, Scotland), 2011, Volume: 20, Issue:2

    Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Bevacizumab; Biomarkers; Breast Neoplasms; Cardiotoxins; Cardiovascular Diseases; Female; Heart Failure; Humans; Indoles; Lapatinib; Molecular Targeted Therapy; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Pyrroles; Quinazolines; Risk Assessment; Sorafenib; Sunitinib; Trastuzumab

2011
Targeted therapy for thymic epithelial tumors: a new horizon? Review of the literature and two cases reports.
    Future oncology (London, England), 2015, Volume: 11, Issue:8

    Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; ErbB Receptors; Female; Histone Deacetylase Inhibitors; Humans; Lapatinib; Molecular Targeted Therapy; Neoplasms, Glandular and Epithelial; Niacinamide; Phenylurea Compounds; Pleural Neoplasms; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-kit; Quinazolines; Receptor, IGF Type 1; Receptors, Somatomedin; Sorafenib; Thymus Neoplasms; TOR Serine-Threonine Kinases; Young Adult

2015
The Molecular Mechanisms of Regulating Oxidative Stress-Induced Ferroptosis and Therapeutic Strategy in Tumors.
    Oxidative medicine and cellular longevity, 2020, Volume: 2020

    Topics: Acetaminophen; Antineoplastic Agents; Antioxidants; Apoptosis; Artemisinins; Auranofin; Cell Death; Cisplatin; Epigenesis, Genetic; Fatty Acids; Ferroptosis; Haloperidol; Humans; Indoles; Iron; Lapatinib; Mevalonic Acid; NADP; Neoplasms; Oxidation-Reduction; Oxidative Stress; Oxygen; Quinolines; Reactive Oxygen Species; Sorafenib; Spiro Compounds; Sulfasalazine; Trigonella

2020

Trials

1 trial(s) available for lapatinib and sorafenib

ArticleYear
Phase I pharmacokinetic and pharmacodynamic study of lapatinib in combination with sorafenib in patients with advanced refractory solid tumors.
    European journal of cancer (Oxford, England : 1990), 2013, Volume: 49, Issue:5

    Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Disease Progression; Dose-Response Relationship, Drug; Drug Hypersensitivity; Drug Resistance, Neoplasm; Female; Humans; Lapatinib; Male; Maximum Tolerated Dose; Middle Aged; Neoplasms; Niacinamide; Phenylurea Compounds; Quinazolines; Sorafenib

2013

Other Studies

37 other study(ies) available for lapatinib and sorafenib

ArticleYear
A small molecule-kinase interaction map for clinical kinase inhibitors.
    Nature biotechnology, 2005, Volume: 23, Issue:3

    Topics: Benzamides; Drug Design; Escherichia coli; Escherichia coli Proteins; Imatinib Mesylate; Microchemistry; Pharmaceutical Preparations; Piperazines; Protein Binding; Protein Interaction Mapping; Protein Kinase Inhibitors; Pyrimidines

2005
A quantitative analysis of kinase inhibitor selectivity.
    Nature biotechnology, 2008, Volume: 26, Issue:1

    Topics: Binding Sites; Enzyme Activation; Humans; Phosphotransferases; Protein Binding; Protein Interaction Mapping; Protein Kinase Inhibitors; Proteome; Quantitative Structure-Activity Relationship

2008
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2010, Volume: 118, Issue:2

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics

2010
Navigating the kinome.
    Nature chemical biology, 2011, Volume: 7, Issue:4

    Topics: Drug Design; Pharmacogenetics; Protein Kinases; Proteome; Systems Biology

2011
Discovery, synthesis, and investigation of the antitumor activity of novel piperazinylpyrimidine derivatives.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:6

    Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Molecular Structure; Piperazines; Protein Kinase Inhibitors; Protein Kinases; Pyrimidines; Stereoisomerism; Structure-Activity Relationship

2011
Comprehensive analysis of kinase inhibitor selectivity.
    Nature biotechnology, 2011, Oct-30, Volume: 29, Issue:11

    Topics: Catalysis; Drug Design; Enzyme Stability; High-Throughput Screening Assays; Humans; Protein Binding; Protein Kinase Inhibitors; Protein Kinases; Proteomics; Signal Transduction; Substrate Specificity

2011
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
Identification of potent Yes1 kinase inhibitors using a library screening approach.
    Bioorganic & medicinal chemistry letters, 2013, Aug-01, Volume: 23, Issue:15

    Topics: Binding Sites; Cell Line; Cell Survival; Drug Design; Humans; Hydrogen Bonding; Molecular Docking Simulation; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-yes; Small Molecule Libraries; Structure-Activity Relationship

2013
Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump.
    Hepatology (Baltimore, Md.), 2014, Volume: 60, Issue:3

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Chemical and Drug Induced Liver Injury; Humans; Male; Mitochondria, Liver; Rats; Rats, Sprague-Dawley; Severity of Illness Index

2014
Structure-activity relationship of 3,5-diaryl-2-aminopyridine ALK2 inhibitors reveals unaltered binding affinity for fibrodysplasia ossificans progressiva causing mutants.
    Journal of medicinal chemistry, 2014, Oct-09, Volume: 57, Issue:19

    Topics: Activin Receptors, Type I; Aminopyridines; Humans; Mutation; Myositis Ossificans; Phenols; Protein Kinase Inhibitors; Structure-Activity Relationship

2014
The target landscape of clinical kinase drugs.
    Science (New York, N.Y.), 2017, 12-01, Volume: 358, Issue:6367

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays

2017
Discovery of first-in-class imidazothiazole-based potent and selective ErbB4 (HER4) kinase inhibitors.
    European journal of medicinal chemistry, 2021, Nov-15, Volume: 224

    Topics: Binding Sites; Catalytic Domain; Cell Line, Tumor; Cell Proliferation; Drug Design; Drug Screening Assays, Antitumor; Humans; Imidazoles; Molecular Docking Simulation; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Receptor, ErbB-4; Structure-Activity Relationship; Thiazoles

2021
Trials probe new agents for kidney cancer.
    JAMA, 2006, Jul-12, Volume: 296, Issue:2

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Bevacizumab; Carcinoma, Renal Cell; Clinical Trials as Topic; Humans; Indoles; Kidney Neoplasms; Lapatinib; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Pyrroles; Quinazolines; Sirolimus; Sorafenib; Sunitinib

2006
[Targeted therapy for metastatic bladder cancer].
    Der Urologe. Ausg. A, 2008, Volume: 47, Issue:10

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Bevacizumab; Carcinoma, Transitional Cell; Disease Progression; Drug Delivery Systems; Gefitinib; Humans; Lapatinib; Niacinamide; Phenylurea Compounds; Pyridines; Quinazolines; Receptor, ErbB-2; Receptors, Growth Factor; Sorafenib; Survival Rate; Trastuzumab; Urinary Bladder Neoplasms

2008
Promising newer molecular-targeted therapies in head and neck cancer.
    Drugs, 2008, Volume: 68, Issue:12

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Cetuximab; Clinical Trials as Topic; ErbB Receptors; Erlotinib Hydrochloride; Gefitinib; Head and Neck Neoplasms; Humans; Lapatinib; Models, Biological; Niacinamide; Panitumumab; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Sorafenib

2008
Therapeutic Drug Monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2009, Jul-15, Volume: 877, Issue:22

    Topics: Antineoplastic Agents; Benzamides; Benzenesulfonates; Chromatography, Liquid; Dasatinib; Drug Monitoring; Humans; Imatinib Mesylate; Indoles; Lapatinib; Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Tandem Mass Spectrometry; Thiazoles

2009
Tyrosine kinase inhibitors gefitinib, lapatinib and sorafenib induce rapid functional alterations in breast cancer cells.
    Current cancer drug targets, 2010, Volume: 10, Issue:4

    Topics: Antineoplastic Agents; Apoptosis; Base Sequence; Benzenesulfonates; Breast Neoplasms; Calcium; Cell Division; Cell Line, Tumor; Cytosol; DNA Primers; Endoplasmic Reticulum; Flow Cytometry; Gefitinib; Humans; Lapatinib; Membrane Potentials; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Quinazolines; Reverse Transcriptase Polymerase Chain Reaction; Sorafenib

2010
Impact of the incorporation of tyrosine kinase inhibitor agents on the treatment of patients with a diagnosis of advanced renal cell carcinoma: study based on experience at the Hospital Universitario Central de Asturias.
    Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 2010, Volume: 12, Issue:8

    Topics: Adult; Aged; Angiogenesis Inhibitors; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Bevacizumab; Carcinoma, Renal Cell; Disease-Free Survival; Drug Therapy, Combination; Female; Humans; Immunologic Factors; Indoles; Interferon-alpha; Interleukin-2; Kaplan-Meier Estimate; Kidney Neoplasms; Lapatinib; Male; Middle Aged; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Pyrroles; Quinazolines; Retrospective Studies; Sorafenib; Sunitinib; Treatment Outcome

2010
HER2-positive breast cancer cells resistant to trastuzumab and lapatinib lose reliance upon HER2 and are sensitive to the multitargeted kinase inhibitor sorafenib.
    Breast cancer research and treatment, 2011, Volume: 130, Issue:1

    Topics: Animals; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzenesulfonates; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Neoplasm; Female; Gene Expression Regulation, Neoplastic; Humans; Inhibitor of Apoptosis Proteins; Lapatinib; Mice; Mice, Inbred NOD; Mice, SCID; Mitogen-Activated Protein Kinases; Myeloid Cell Leukemia Sequence 1 Protein; Niacinamide; Oncogene Protein v-akt; Phenylurea Compounds; Phosphatidylinositol 3-Kinases; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyridines; Quinazolines; Receptor, ErbB-2; RNA, Small Interfering; Signal Transduction; Sorafenib; Survivin; Trastuzumab; Tumor Burden; Xenograft Model Antitumor Assays

2011
First-line treatment for advanced pancreatic cancer. Highlights from the "2011 ASCO Gastrointestinal Cancers Symposium". San Francisco, CA, USA. January 20-22, 2011.
    JOP : Journal of the pancreas, 2011, Mar-09, Volume: 12, Issue:2

    Topics: Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Capecitabine; Clinical Trials as Topic; Deoxycytidine; Erlotinib Hydrochloride; Fluorouracil; Gemcitabine; Humans; Lapatinib; Medicine, Chinese Traditional; Niacinamide; Pancreatic Neoplasms; Phenylurea Compounds; Pyridines; Quinazolines; Sorafenib; Treatment Outcome

2011
[Renal tolerance of targeted therapies].
    Bulletin du cancer, 2012, Mar-01, Volume: 99, Issue:3

    Topics: Antibodies, Monoclonal; Benzenesulfonates; Boronic Acids; Bortezomib; Erlotinib Hydrochloride; Glomerulonephritis; Humans; Indoles; Kidney; Kidney Tubules; Lapatinib; Molecular Targeted Therapy; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrazines; Pyridines; Pyrroles; Quinazolines; Sirolimus; Sorafenib; Sunitinib

2012
Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 2013, May-01, Volume: 926

    Topics: Antineoplastic Agents; Benzamides; Boronic Acids; Bortezomib; Chromatography, Liquid; Dasatinib; Erlotinib Hydrochloride; Humans; Imatinib Mesylate; Indoles; Lapatinib; Niacinamide; Phenylurea Compounds; Piperazines; Piperidines; Pyrazines; Pyrimidines; Pyrroles; Quinazolines; Reproducibility of Results; Sorafenib; Sunitinib; Tandem Mass Spectrometry; Thiazoles

2013
Development and validation of a high-performance liquid chromatography ultraviolet method for lapatinib quantification in human plasma.
    Therapeutic drug monitoring, 2013, Volume: 35, Issue:6

    Topics: Acetonitriles; Administration, Oral; Antineoplastic Agents; Calibration; Chromatography, High Pressure Liquid; Drug Monitoring; Humans; Lapatinib; Limit of Detection; Niacinamide; Phenylurea Compounds; Quinazolines; Sorafenib; Spectrophotometry, Ultraviolet

2013
Development and validation of an HPLC-UV method for sorafenib quantification in human plasma and application to patients with cancer in routine clinical practice.
    Therapeutic drug monitoring, 2014, Volume: 36, Issue:3

    Topics: Antineoplastic Agents; Area Under Curve; Calibration; Chromatography, High Pressure Liquid; Dose-Response Relationship, Drug; Drug Monitoring; Humans; Lapatinib; Metabolic Clearance Rate; Neoplasms; Niacinamide; Phenylurea Compounds; Quinazolines; Reproducibility of Results; Sorafenib; Spectrophotometry, Ultraviolet

2014
Activity of anti-cancer protein kinase inhibitors against Leishmania spp.
    The Journal of antimicrobial chemotherapy, 2014, Volume: 69, Issue:7

    Topics: Animals; Antineoplastic Agents; Antiprotozoal Agents; Disease Models, Animal; Drug Repositioning; Indoles; Inhibitory Concentration 50; Lapatinib; Leishmania; Leishmaniasis; Mice, Inbred BALB C; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Treatment Outcome

2014
Investigation of antitumor effects of sorafenib and lapatinib alone and in combination on MCF-7 breast cancer cells.
    Asian Pacific journal of cancer prevention : APJCP, 2014, Volume: 15, Issue:7

    Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Breast Neoplasms; Cell Line, Tumor; Cell Survival; Drug Evaluation, Preclinical; Drug Synergism; ErbB Receptors; Female; Humans; Lapatinib; MCF-7 Cells; Molecular Targeted Therapy; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Quinazolines; Sorafenib; Vascular Endothelial Growth Factor A

2014
Sorafenib/regorafenib and lapatinib interact to kill CNS tumor cells.
    Journal of cellular physiology, 2015, Volume: 230, Issue:1

    Topics: Anoikis; Antineoplastic Agents; Apoptosis Regulatory Proteins; Autophagy-Related Protein 5; bcl-X Protein; Beclin-1; Brain Neoplasms; CASP8 and FADD-Like Apoptosis Regulating Protein; Caspase 9; Cell Line, Tumor; Drug Synergism; ErbB Receptors; fas Receptor; Fas-Associated Death Domain Protein; Glioblastoma; Humans; Lapatinib; Lysosomal-Associated Membrane Protein 2; MAP Kinase Kinase 1; Membrane Proteins; Microtubule-Associated Proteins; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; PTEN Phosphohydrolase; Pyridines; Quinazolines; Sorafenib; TOR Serine-Threonine Kinases; Unfolded Protein Response

2015
Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts.
    Journal of translational medicine, 2015, Jun-13, Volume: 13

    Topics: Animals; Antibodies, Neoplasm; Cell Line, Tumor; Cell Proliferation; Cellular Apoptosis Susceptibility Protein; Colorectal Neoplasms; Extracellular Signal-Regulated MAP Kinases; Humans; Indoles; Lapatinib; Male; Melanoma; Mice, Inbred NOD; Mice, SCID; Niacinamide; Phenylurea Compounds; Phosphorylation; Pyrroles; Quinazolines; Sorafenib; Sulfonamides; Sunitinib; Vemurafenib; Xenograft Model Antitumor Assays

2015
Target prices for mass production of tyrosine kinase inhibitors for global cancer treatment.
    BMJ open, 2016, Jan-27, Volume: 6, Issue:1

    Topics: Antineoplastic Agents; Commerce; Drug Industry; Erlotinib Hydrochloride; Global Health; Humans; Imatinib Mesylate; Lapatinib; Neoplasms; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Quinazolines; Sorafenib

2016
Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia.
    Biochemical pharmacology, 2017, 04-01, Volume: 129

    Topics: Bilirubin; Catalysis; Enzyme Inhibitors; Glucuronosyltransferase; Humans; Hyperbilirubinemia; Indazoles; Kinetics; Lapatinib; Microsomes, Liver; Niacinamide; Phenylurea Compounds; Pyridines; Pyrimidines; Quinazolines; Sorafenib; Sulfonamides

2017
Selection of Protein Kinase Inhibitors Based on Tumor Tissue Kinase Activity Profiles in Patients with Refractory Solid Malignancies: An Interventional Molecular Profiling Study.
    The oncologist, 2018, Volume: 23, Issue:10

    Topics: Adult; Aged; Antineoplastic Agents; Dasatinib; Erlotinib Hydrochloride; Everolimus; Female; Humans; Lapatinib; Male; Middle Aged; Neoplasms; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Sorafenib; Sunitinib

2018
Fingolimod sensitizes EGFR wild‑type non‑small cell lung cancer cells to lapatinib or sorafenib and induces cell cycle arrest.
    Oncology reports, 2019, Volume: 42, Issue:1

    Topics: A549 Cells; Autophagy-Related Proteins; Carcinoma, Non-Small-Cell Lung; Cell Cycle; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Drug Repositioning; Drug Resistance, Neoplasm; Drug Synergism; ErbB Receptors; Fingolimod Hydrochloride; Humans; Lapatinib; Lung Neoplasms; Protein Kinase Inhibitors; Sorafenib

2019
Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming.
    Cell systems, 2019, 05-22, Volume: 8, Issue:5

    Topics: Acclimatization; Antineoplastic Agents; Cardiotoxicity; Cell Differentiation; Cells, Cultured; Erlotinib Hydrochloride; Gene Expression Profiling; Humans; Induced Pluripotent Stem Cells; Lapatinib; Myocytes, Cardiac; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Signal Transduction; Sorafenib; Sunitinib

2019
Assessment of modelling strategies for drug response prediction in cell lines and xenografts.
    Scientific reports, 2020, 02-18, Volume: 10, Issue:1

    Topics: Animals; Biomarkers, Pharmacological; Cell Line, Tumor; Erlotinib Hydrochloride; Humans; Imidazoles; Indoles; Lapatinib; Machine Learning; Mice; Neoplasms; Organ Specificity; Paclitaxel; Piperazines; Prognosis; Pyrimidines; Sorafenib; Sulfonamides; Xenograft Model Antitumor Assays

2020
Differential Inhibitory Actions of Multitargeted Tyrosine Kinase Inhibitors on Different Ionic Current Types in Cardiomyocytes.
    International journal of molecular sciences, 2020, Feb-29, Volume: 21, Issue:5

    Topics: Action Potentials; Animals; Humans; Ion Channels; Ion Transport; Isoproterenol; Lapatinib; Mice; Myocytes, Cardiac; Neoplasms; Potassium; Potassium Channels; Protein Kinase Inhibitors; Rats; Sodium; Sorafenib

2020
Design and synthesis of some new 6-bromo-2-(pyridin-3-yl)-4-substituted quinazolines as multi tyrosine kinase inhibitors.
    Bioorganic chemistry, 2022, Volume: 128

    Topics: Antineoplastic Agents; Cell Proliferation; Drug Screening Assays, Antitumor; ErbB Receptors; Humans; Lapatinib; Molecular Docking Simulation; Molecular Structure; Protein Kinase Inhibitors; Quinazolines; Sorafenib; Structure-Activity Relationship; Vascular Endothelial Growth Factor Receptor-2

2022
Identification of an Oxidative Stress-Related LncRNA Signature for Predicting Prognosis and Chemotherapy in Patients With Hepatocellular Carcinoma.
    Pathology oncology research : POR, 2022, Volume: 28

    Topics: Biomarkers, Tumor; Carcinoma, Hepatocellular; Dasatinib; Erlotinib Hydrochloride; Gefitinib; Gene Expression Regulation, Neoplastic; Humans; Lapatinib; Liver Neoplasms; Oxidative Stress; Prognosis; RNA, Long Noncoding; Sorafenib

2022