Page last updated: 2024-09-05

lapatinib and ritonavir

lapatinib has been researched along with ritonavir in 12 studies

Compound Research Comparison

Studies
(lapatinib)
Trials
(lapatinib)
Recent Studies (post-2010)
(lapatinib)
Studies
(ritonavir)
Trials
(ritonavir)
Recent Studies (post-2010) (ritonavir)
1,9193051,4425,4191,2912,772

Protein Interaction Comparison

ProteinTaxonomylapatinib (IC50)ritonavir (IC50)
Solute carrier organic anion transporter family member 2B1 Homo sapiens (human)6.1
Bile salt export pumpHomo sapiens (human)2.085
ATP-dependent translocase ABCB1Homo sapiens (human)2.65
Cytochrome P450 3A4Homo sapiens (human)0.1623
Cytochrome P450 2D6Homo sapiens (human)2.3
Cytochrome P450 2C9 Homo sapiens (human)2.458
Gag-Pol polyproteinHuman immunodeficiency virus type 1 (NEW YORK-5 ISOLATE)0.067
Substance-K receptorHomo sapiens (human)2.622
UDP-glucuronosyltransferase 1A1 Homo sapiens (human)2.35
Thromboxane-A synthase Homo sapiens (human)0.076
Multidrug and toxin extrusion protein 2Homo sapiens (human)4.4
Multidrug and toxin extrusion protein 1Homo sapiens (human)2.1933
Solute carrier organic anion transporter family member 1B3Homo sapiens (human)4.4
Solute carrier organic anion transporter family member 1B1Homo sapiens (human)2
Protease Human immunodeficiency virus 14.9253

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's9 (75.00)24.3611
2020's3 (25.00)2.80

Authors

AuthorsStudies
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ1
Ekins, S; Williams, AJ; Xu, JJ1
Chen, M; Fang, H; Liu, Z; Shi, Q; Tong, W; Vijay, V1
Ballard, TE; Henderson, JL; Kalgutkar, AS; Obach, RS; Orr, ST; Ripp, SL; Scott, DO; Sun, H1
Aleo, MD; Bonin, PD; Luo, Y; Potter, DM; Swiss, R; Will, Y1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Jones, LH; Nadanaciva, S; Rana, P; Will, Y1
Jadhav, A; Kerns, E; Nguyen, K; Shah, P; Sun, H; Xu, X; Yan, Z; Yu, KR1
Kabir, M; Kerns, E; Nguyen, K; Shah, P; Sun, H; Wang, Y; Xu, X; Yu, KR1
Norman, BH1
Kabir, M; Kerns, E; Neyra, J; Nguyen, K; Nguyễn, ÐT; Shah, P; Siramshetty, VB; Southall, N; Williams, J; Xu, X; Yu, KR1
Itkin, M; Kabir, M; Mathé, EA; Nguyễn, ÐT; Padilha, EC; Shah, P; Shinn, P; Siramshetty, V; Wang, AQ; Williams, J; Xu, X; Yu, KR; Zhao, T1

Reviews

4 review(s) available for lapatinib and ritonavir

ArticleYear
Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks.
    Journal of medicinal chemistry, 2012, Jun-14, Volume: 55, Issue:11

    Topics: Animals; Apoproteins; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Drug Discovery; Drug Interactions; Heme; Humans; Models, Biological; Pharmacokinetics; Structure-Activity Relationship; Time Factors

2012
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016
Drug Induced Liver Injury (DILI). Mechanisms and Medicinal Chemistry Avoidance/Mitigation Strategies.
    Journal of medicinal chemistry, 2020, 10-22, Volume: 63, Issue:20

    Topics: Animals; Cell Line; Cell Survival; Chemical and Drug Induced Liver Injury; Drug Discovery; Drug Evaluation, Preclinical; Hepatocytes; Humans; Liver; Mitochondria, Liver; Pharmaceutical Preparations; Risk Assessment; Tissue Distribution

2020
Using in vitro ADME data for lead compound selection: An emphasis on PAMPA pH 5 permeability and oral bioavailability.
    Bioorganic & medicinal chemistry, 2022, 02-15, Volume: 56

    Topics: Administration, Oral; Animals; Betamethasone; Biological Availability; Caco-2 Cells; Cell Membrane Permeability; Cells, Cultured; Dexamethasone; Dogs; Dose-Response Relationship, Drug; Humans; Hydrogen-Ion Concentration; Madin Darby Canine Kidney Cells; Mice; Molecular Structure; Neural Networks, Computer; Ranitidine; Rats; Structure-Activity Relationship; Verapamil

2022

Other Studies

8 other study(ies) available for lapatinib and ritonavir

ArticleYear
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2010, Volume: 118, Issue:2

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
FDA-approved drug labeling for the study of drug-induced liver injury.
    Drug discovery today, 2011, Volume: 16, Issue:15-16

    Topics: Animals; Benchmarking; Biomarkers, Pharmacological; Chemical and Drug Induced Liver Injury; Drug Design; Drug Labeling; Drug-Related Side Effects and Adverse Reactions; Humans; Pharmaceutical Preparations; Reproducibility of Results; United States; United States Food and Drug Administration

2011
Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump.
    Hepatology (Baltimore, Md.), 2014, Volume: 60, Issue:3

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Chemical and Drug Induced Liver Injury; Humans; Male; Mitochondria, Liver; Rats; Rats, Sprague-Dawley; Severity of Illness Index

2014
Development of a cell viability assay to assess drug metabolite structure-toxicity relationships.
    Bioorganic & medicinal chemistry letters, 2016, 08-15, Volume: 26, Issue:16

    Topics: Adenosine Triphosphate; Benzbromarone; Cell Line; Cell Survival; Chromans; Cytochrome P-450 CYP2C9; Cytochrome P-450 CYP2D6; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Humans; Pharmaceutical Preparations; Thiazolidinediones; Troglitazone

2016
Highly predictive and interpretable models for PAMPA permeability.
    Bioorganic & medicinal chemistry, 2017, 02-01, Volume: 25, Issue:3

    Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Humans; Models, Biological; Organic Chemicals; Regression Analysis; Support Vector Machine

2017
Predictive models of aqueous solubility of organic compounds built on A large dataset of high integrity.
    Bioorganic & medicinal chemistry, 2019, 07-15, Volume: 27, Issue:14

    Topics: Drug Discovery; Organic Chemicals; Pharmaceutical Preparations; Solubility

2019
Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
    Scientific reports, 2020, 11-26, Volume: 10, Issue:1

    Topics: Animals; Computer Simulation; Databases, Factual; Drug Discovery; High-Throughput Screening Assays; Liver; Machine Learning; Male; Microsomes, Liver; National Center for Advancing Translational Sciences (U.S.); Pharmaceutical Preparations; Quantitative Structure-Activity Relationship; Rats; Rats, Sprague-Dawley; Retrospective Studies; United States

2020