lapatinib has been researched along with plx4032 in 7 studies
Studies (lapatinib) | Trials (lapatinib) | Recent Studies (post-2010) (lapatinib) | Studies (plx4032) | Trials (plx4032) | Recent Studies (post-2010) (plx4032) |
---|---|---|---|---|---|
1,919 | 305 | 1,442 | 1,657 | 103 | 1,587 |
Protein | Taxonomy | lapatinib (IC50) | plx4032 (IC50) |
---|---|---|---|
Chain A, AKAP9-BRAF fusion protein | Homo sapiens (human) | 0.031 | |
RAF proto-oncogene serine/threonine-protein kinase | Homo sapiens (human) | 0.182 | |
Serine/threonine-protein kinase A-Raf | Homo sapiens (human) | 0.521 | |
Serine/threonine-protein kinase B-raf | Homo sapiens (human) | 0.0897 | |
Serine/threonine-protein kinase B-raf | Mus musculus (house mouse) | 0.03 | |
Vascular endothelial growth factor receptor 2 | Homo sapiens (human) | 0.36 | |
Dual specificity mitogen-activated protein kinase kinase 2 | Homo sapiens (human) | 1.5 | |
Dual specificity mitogen-activated protein kinase kinase 1 | Homo sapiens (human) | 1.5 | |
Mitogen-activated protein kinase kinase kinase 20 | Homo sapiens (human) | 0.0272 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 7 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Davis, MI; Khan, J; Li, SQ; Patel, PR; Shen, M; Sun, H; Thomas, CJ | 1 |
Bullock, AN; Canning, P; Choi, S; Cuny, GD; Mohedas, AH; Sanvitale, CE; Wang, Y; Xing, X; Yu, PB | 1 |
Aiche, S; Bassermann, F; Becker, W; Canevari, G; Casale, E; Depaolini, SR; Ehrlich, HC; Felder, ER; Feuchtinger, A; Garz, AK; Gohlke, BO; Götze, K; Greif, PA; Hahne, H; Heinzlmeir, S; Helm, D; Huenges, J; Jeremias, I; Kayser, G; Klaeger, S; Koch, H; Koenig, PA; Kramer, K; Kuster, B; Médard, G; Meng, C; Petzoldt, S; Polzer, H; Preissner, R; Qiao, H; Reinecke, M; Reiter, K; Rueckert, L; Ruland, J; Ruprecht, B; Schlegl, J; Schmidt, T; Schneider, S; Schoof, M; Spiekermann, K; Tõnisson, N; Vick, B; Vooder, T; Walch, A; Wilhelm, M; Wu, Z; Zecha, J; Zolg, DP | 1 |
Guo, Y; He, J; Li, Y; Liu, M; Liu, Y; Xiao, J; Yu, W; Zhang, Q | 1 |
Burton, L; Chan, E; Fridlyand, J; Koeppen, H; Li, J; Lin, E; Merchant, M; Moffat, J; Neve, R; Peng, J; Penuel, E; Ribas, A; Settleman, J; Sosman, J; Sutherlin, DP; Wang, Y; Wilson, TR; Yan, Y | 1 |
Clarke, PA; Pearl, LH; Polier, S; Prodromou, C; Samant, RS; Workman, P | 1 |
Chen, YC; Chin, SY; Chou, CL; Jiang, MC; Lee, WR; Liu, KH; Shen, SC; Shih, YH; Tseng, JT | 1 |
1 review(s) available for lapatinib and plx4032
Article | Year |
---|---|
The association between anti-tumor potency and structure-activity of protein-kinases inhibitors based on quinazoline molecular skeleton.
Topics: Animals; Antineoplastic Agents; Cell Proliferation; Humans; Neoplasms; Protein Kinase Inhibitors; Protein Kinases; Quinazolines | 2019 |
6 other study(ies) available for lapatinib and plx4032
Article | Year |
---|---|
Identification of potent Yes1 kinase inhibitors using a library screening approach.
Topics: Binding Sites; Cell Line; Cell Survival; Drug Design; Humans; Hydrogen Bonding; Molecular Docking Simulation; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-yes; Small Molecule Libraries; Structure-Activity Relationship | 2013 |
Structure-activity relationship of 3,5-diaryl-2-aminopyridine ALK2 inhibitors reveals unaltered binding affinity for fibrodysplasia ossificans progressiva causing mutants.
Topics: Activin Receptors, Type I; Aminopyridines; Humans; Mutation; Myositis Ossificans; Phenols; Protein Kinase Inhibitors; Structure-Activity Relationship | 2014 |
The target landscape of clinical kinase drugs.
Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays | 2017 |
Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors.
Topics: Antineoplastic Agents; Breast Neoplasms; Cell Line, Tumor; Cell Survival; Drug Resistance, Neoplasm; Female; Hepatocyte Growth Factor; Humans; Indoles; Lapatinib; Ligands; Melanoma; Mitogen-Activated Protein Kinases; Phosphatidylinositol 3-Kinases; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Quinazolines; Receptor Protein-Tyrosine Kinases; Receptor, ErbB-2; Signal Transduction; Sulfonamides; Vemurafenib | 2012 |
ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system.
Topics: Adenosine Triphosphate; Binding, Competitive; Cell Cycle Proteins; Chaperonins; HSP90 Heat-Shock Proteins; Indoles; Lapatinib; Protein Kinase Inhibitors; Protein Kinases; Quinazolines; Structure-Activity Relationship; Sulfonamides; Vemurafenib | 2013 |
Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts.
Topics: Animals; Antibodies, Neoplasm; Cell Line, Tumor; Cell Proliferation; Cellular Apoptosis Susceptibility Protein; Colorectal Neoplasms; Extracellular Signal-Regulated MAP Kinases; Humans; Indoles; Lapatinib; Male; Melanoma; Mice, Inbred NOD; Mice, SCID; Niacinamide; Phenylurea Compounds; Phosphorylation; Pyrroles; Quinazolines; Sorafenib; Sulfonamides; Sunitinib; Vemurafenib; Xenograft Model Antitumor Assays | 2015 |