lapatinib has been researched along with palbociclib in 12 studies
Studies (lapatinib) | Trials (lapatinib) | Recent Studies (post-2010) (lapatinib) | Studies (palbociclib) | Trials (palbociclib) | Recent Studies (post-2010) (palbociclib) |
---|---|---|---|---|---|
1,919 | 305 | 1,442 | 911 | 126 | 864 |
Protein | Taxonomy | lapatinib (IC50) | palbociclib (IC50) |
---|---|---|---|
Chain B, Cell division protein kinase 6 | Homo sapiens (human) | 0.015 | |
Chain B, Cell division protein kinase 6 | Homo sapiens (human) | 0.015 | |
Cyclin-T1 | Homo sapiens (human) | 1.5085 | |
Cyclin-K | Homo sapiens (human) | 1.207 | |
Cyclin-dependent kinase 1 | Homo sapiens (human) | 9.8 | |
Cyclin-dependent kinase 4 | Homo sapiens (human) | 0.0109 | |
G2/mitotic-specific cyclin-B1 | Homo sapiens (human) | 9.8 | |
Cyclin-A2 | Homo sapiens (human) | 2.2042 | |
Acetylcholinesterase | Mus musculus (house mouse) | 0.021 | |
G1/S-specific cyclin-D1 | Homo sapiens (human) | 0.0115 | |
G1/S-specific cyclin-E1 | Homo sapiens (human) | 9.15 | |
Cyclin-dependent kinase 2 | Homo sapiens (human) | 4.1887 | |
G1/S-specific cyclin-D2 | Homo sapiens (human) | 0.0127 | |
G1/S-specific cyclin-D3 | Homo sapiens (human) | 0.0194 | |
Receptor-type tyrosine-protein kinase FLT3 | Homo sapiens (human) | 3.48 | |
Cyclin-dependent kinase 9 | Homo sapiens (human) | 1.1821 | |
Tyrosine-protein kinase JAK3 | Homo sapiens (human) | 0.0631 | |
Cyclin-dependent kinase 6 | Homo sapiens (human) | 0.018 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 8 (66.67) | 24.3611 |
2020's | 4 (33.33) | 2.80 |
Authors | Studies |
---|---|
Hajduk, PJ; Johnson, EF; Kifle, L; Merta, PJ; Metz, JT; Soni, NB | 1 |
Davis, MI; Khan, J; Li, SQ; Patel, PR; Shen, M; Sun, H; Thomas, CJ | 1 |
Jadhav, A; Kerns, E; Nguyen, K; Shah, P; Sun, H; Xu, X; Yan, Z; Yu, KR | 1 |
Aiche, S; Bassermann, F; Becker, W; Canevari, G; Casale, E; Depaolini, SR; Ehrlich, HC; Felder, ER; Feuchtinger, A; Garz, AK; Gohlke, BO; Götze, K; Greif, PA; Hahne, H; Heinzlmeir, S; Helm, D; Huenges, J; Jeremias, I; Kayser, G; Klaeger, S; Koch, H; Koenig, PA; Kramer, K; Kuster, B; Médard, G; Meng, C; Petzoldt, S; Polzer, H; Preissner, R; Qiao, H; Reinecke, M; Reiter, K; Rueckert, L; Ruland, J; Ruprecht, B; Schlegl, J; Schmidt, T; Schneider, S; Schoof, M; Spiekermann, K; Tõnisson, N; Vick, B; Vooder, T; Walch, A; Wilhelm, M; Wu, Z; Zecha, J; Zolg, DP | 1 |
Ajenjo, N; Albarrán, MI; Bischoff, JR; Blanco-Aparicio, C; Cebriá, A; Cebrián, D; Cuadrado-Urbano, M; García, AB; García-Serelde, B; Gómez de la Oliva, CA; Gómez-Casero, E; González Cantalapiedra, E; Hernández, AI; Klett, J; Martínez-González, S; Oyarzabal, J; Pastor, J; Rabal, O; Rodríguez-Arístegui, S; Varela, C | 1 |
Kabir, M; Kerns, E; Nguyen, K; Shah, P; Sun, H; Wang, Y; Xu, X; Yu, KR | 1 |
Afratis, K; Gavras, H; Karamanos, NK; Koutsakis, C; Leonardi, S; Papaioannou, D; Piperigkou, Z; Rassias, G; Rigopoulou, D; Vachlioti, E | 1 |
Kabir, M; Kerns, E; Neyra, J; Nguyen, K; Nguyễn, ÐT; Shah, P; Siramshetty, VB; Southall, N; Williams, J; Xu, X; Yu, KR | 1 |
Chen, XB; Wang, S; Wang, SQ; Yu, B; Yuan, XH; Zhao, W | 1 |
Bregni, G; de Braud, F; Di Cosimo, S; Zanardi, E | 1 |
Buskens, E; de Bock, GH; Greuter, MJW; Koleva-Kolarova, RG; Oktora, MP; Reyners, AKL; Robijn, AL | 1 |
Li, H; Sui, S; Wang, L; Xu, S; Zhang, L; Zhang, X; Zheng, X | 1 |
3 review(s) available for lapatinib and palbociclib
Article | Year |
---|---|
FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application.
Topics: Antineoplastic Agents; Bridged Bicyclo Compounds, Heterocyclic; Humans; Molecular Structure; Neoplasms; Pyrimidines; United States; United States Food and Drug Administration | 2021 |
Better Together: Targeted Combination Therapies in Breast Cancer.
Topics: Androstadienes; Antineoplastic Combined Chemotherapy Protocols; Breast Neoplasms; Drug Resistance, Neoplasm; Everolimus; Female; Humans; Lapatinib; Letrozole; Molecular Targeted Therapy; Nitriles; Piperazines; Protein Kinase Inhibitors; Pyridines; Quinazolines; Receptor, ErbB-2; Trastuzumab; Triazoles | 2015 |
Increased life expectancy as a result of non-hormonal targeted therapies for HER2 or hormone receptor positive metastatic breast cancer: A systematic review and meta-analysis.
Topics: Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Bevacizumab; Breast Neoplasms; Disease-Free Survival; Everolimus; Female; Humans; Lapatinib; Life Expectancy; Molecular Targeted Therapy; Neoplasm Metastasis; Piperazines; Pyridines; Quinazolines; Receptor, ErbB-2; Receptors, Estrogen; Receptors, Progesterone; Survival Rate; Trastuzumab | 2017 |
9 other study(ies) available for lapatinib and palbociclib
Article | Year |
---|---|
Navigating the kinome.
Topics: Drug Design; Pharmacogenetics; Protein Kinases; Proteome; Systems Biology | 2011 |
Identification of potent Yes1 kinase inhibitors using a library screening approach.
Topics: Binding Sites; Cell Line; Cell Survival; Drug Design; Humans; Hydrogen Bonding; Molecular Docking Simulation; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-yes; Small Molecule Libraries; Structure-Activity Relationship | 2013 |
Highly predictive and interpretable models for PAMPA permeability.
Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Humans; Models, Biological; Organic Chemicals; Regression Analysis; Support Vector Machine | 2017 |
The target landscape of clinical kinase drugs.
Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays | 2017 |
Discovery of novel triazolo[4,3-b]pyridazin-3-yl-quinoline derivatives as PIM inhibitors.
Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Molecular Structure; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-pim-1; Pyridazines; Quinolines; Structure-Activity Relationship; Triazoles | 2019 |
Predictive models of aqueous solubility of organic compounds built on A large dataset of high integrity.
Topics: Drug Discovery; Organic Chemicals; Pharmaceutical Preparations; Solubility | 2019 |
Potent antiproliferative activity of bradykinin B2 receptor selective agonist FR-190997 and analogue structures thereof: A paradox resolved?
Topics: Anti-Bacterial Agents; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Female; Humans; MCF-7 Cells; Quinolines; Receptor, Bradykinin B2 | 2021 |
Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
Topics: Animals; Computer Simulation; Databases, Factual; Drug Discovery; High-Throughput Screening Assays; Liver; Machine Learning; Male; Microsomes, Liver; National Center for Advancing Translational Sciences (U.S.); Pharmaceutical Preparations; Quantitative Structure-Activity Relationship; Rats; Rats, Sprague-Dawley; Retrospective Studies; United States | 2020 |
Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin.
Topics: A549 Cells; Animals; Carbamates; Cell Movement; Cisplatin; Dipeptides; DNA Methylation; Epigenesis, Genetic; Ferroptosis; Heterografts; Histones; Humans; Lapatinib; Mice; Neoplasm Invasiveness; Neoplasms; Phospholipid Hydroperoxide Glutathione Peroxidase; Piperazines; Pyridines; Topotecan | 2020 |