lapachol and morin

lapachol has been researched along with morin in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19901 (20.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's2 (40.00)24.3611
2020's2 (40.00)2.80

Authors

AuthorsStudies
Doweyko, AM1
Deng, H; Fang, Y; Ferrie, AM; Hu, H; Ling, S1
Abdeen, S; Chapman, E; Chitre, S; Hoang, QQ; Johnson, SM; Park, Y; Ray, AM; Salim, N; Sivinski, J; Stevens, M; Washburn, A1
Ding, H; Dong, H; Hou, Z; Luo, C; Min, W; Qi, L; Wang, L; Xie, S; Yang, P; Yuan, K; Zhang, F1
Albiñana, CB; Brynda, J; Fanfrlík, J; Flieger, M; Hodek, J; Karlukova, E; Konvalinka, J; Kožíšek, M; Machara, A; Majer, P; Radilová, K; Weber, J; Zima, V1

Other Studies

5 other study(ies) available for lapachol and morin

ArticleYear
The hypothetical active site lattice. An approach to modelling active sites from data on inhibitor molecules.
    Journal of medicinal chemistry, 1988, Volume: 31, Issue:7

    Topics: Binding Sites; Binding, Competitive; Chemical Phenomena; Chemistry; Enzyme Inhibitors; Escherichia coli; Folic Acid Antagonists; Lactoylglutathione Lyase; Lyases; Microcomputers; Models, Chemical; Models, Molecular; Molecular Conformation; Saccharomyces cerevisiae; Structure-Activity Relationship; Thermodynamics

1988
Discovery of Natural Phenols as G Protein-Coupled Receptor-35 (GPR35) Agonists.
    ACS medicinal chemistry letters, 2012, Feb-09, Volume: 3, Issue:2

    Topics:

2012
HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules.
    Bioorganic & medicinal chemistry letters, 2019, 05-01, Volume: 29, Issue:9

    Topics: Biological Products; Chaperonin 10; Chaperonin 60; Escherichia coli; Humans; Inhibitory Concentration 50; Protein Folding; Rafoxanide; Salicylanilides; Suramin

2019
Computational discovery and biological evaluation of novel inhibitors targeting histone-lysine N-methyltransferase SET7.
    Bioorganic & medicinal chemistry, 2020, 04-01, Volume: 28, Issue:7

    Topics: Antineoplastic Agents; Catalytic Domain; Cell Line, Tumor; Cell Survival; Computational Chemistry; Computer Simulation; Drug Discovery; Escherichia coli; Histone-Lysine N-Methyltransferase; Humans; Molecular Structure; Protein Binding; Protein Conformation; Structure-Activity Relationship

2020
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors.
    European journal of medicinal chemistry, 2020, Dec-15, Volume: 208

    Topics: Antiviral Agents; Crystallography, X-Ray; Drug Evaluation, Preclinical; Endonucleases; Enzyme Assays; Enzyme Inhibitors; Flavonoids; Influenza A virus; Microbial Sensitivity Tests; Molecular Structure; Protein Binding; Protein Domains; RNA-Dependent RNA Polymerase; Structure-Activity Relationship; Viral Proteins

2020