lactoferrin has been researched along with coumarin-6* in 7 studies
7 other study(ies) available for lactoferrin and coumarin-6
Article | Year |
---|---|
Preparation, optimization and cellular uptake study of tanshinone I nanoemulsion modified with lactoferrin for brain drug delivery.
Topics: Abietanes; Animals; Biological Availability; Biological Transport; Blood-Brain Barrier; Brain; Cell Line; Coumarins; Drug Carriers; Drug Delivery Systems; Emulsions; Lactoferrin; Mice; Nanoparticles; Particle Size; Permeability; Polyethylene Glycols; Solubility; Thiazoles; Tissue Distribution | 2019 |
[In vitro targeting effect of lactoferrin modified PEGylated liposomes for hepatoma cells].
A lactoferrin-containing PEGylated liposome system (Lf-PLS) was developed and tested in vitro as a hepatoma-targeting drug delivery system. PEGylated liposomes (PLS) were successfully prepared using the thin film hydration method with peglipid post insertion. Lf was covalently conjugated onto the carboxyl terminal of DSPE-PEG2000-COOH on liposomes. Coumarin-6 was used to trace Lf-PLS with fluorescence. The cellular uptake of this system was carried out in asialoglycoprotein receptor (ASGPR) positive HepG2 cells via confocal microscopy and flow cytometry. The Lf-PLS liposome was observed as spherical or oval vesicles with the particle size around 130 nm, zeta potential about -30 mV and encapsulation efficiency more than 80%. The confocal microscopy images and flow cytometry data demonstrated that Lf-PLS resulted in significantly higher cell association by ASGPR positive HepG2 cells compared to PLS. The association between Lf-PLS and cells were dependent on the concentration, time and temperature, which was inhibited by pre-incubation with excessive free Lf. The results suggest that Lf-PLS has a good targeting effect on HepG2 cells in vitro. The targeting mechanism may be related to the specific binding of Lf and ASGPR on HepG2 cells, which guides Lf-PLS to the cell surface to induce an active endocytosis process. All these results demonstrated that Lf-PLS might be a potential drug delivery system in targeting hepatocellular carcinoma, which deserves more research on its targeting ability, antitumor efficiency, and metabolism in vivo for treatment of hepatomacellular carcinoma. Topics: Asialoglycoprotein Receptor; Carcinoma, Hepatocellular; Coumarins; Drug Delivery Systems; Endocytosis; Hep G2 Cells; Humans; Lactoferrin; Liposomes; Liver Neoplasms; Particle Size; Phosphatidylethanolamines; Polyethylene Glycols; Thiazoles | 2015 |
Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration.
Development of effective non-invasive drug delivery systems is of great importance to the treatment of Alzheimer's diseases and has made great progress in recent years. In this work, lactoferrin (Lf), a natural iron binding protein, whose receptor is highly expressed in both respiratory epithelial cells and neurons is here utilized to facilitate the nose-to-brain drug delivery of neuroprotection peptides. The Lf-conjugated PEG-PCL nanoparticle (Lf-NP) was constructed via a maleimide-thiol reaction with the Lf conjugation confirmed by CBQCA Protein Quantitation and XPS analysis. Other important parameters such as particle size distribution, zeta potential and in vitro release of fluorescent probes were also characterized. Compared with unmodified nanoparticles (NP), Lf-NP exhibited a significantly enhanced cellular accumulation in 16HBE14o-cells through both caveolae-/clathrin-mediated endocytosis and direct translocation. Following intranasal administration, Lf-NP facilitated the brain distribution of the coumarin-6 incorporated with the AUC0-8h in rat cerebrum (with hippocampus removed), cerebellum, olfactory tract, olfactory bulb and hippocampus 1.36, 1.53, 1.70, 1.57 and 1.23 times higher than that of coumarin-6 carried by NP, respectively. Using a neuroprotective peptide - NAPVSIPQ (NAP) as the model drug, the neuroprotective and memory improvement effect of Lf-NP was observed even at lower dose than that of NP in a Morris water maze experiment, which was also confirmed by the evaluation of acetylcholinesterase, choline acetyltransferase activity and neuronal degeneration in the mice hippocampus. In conclusion, Lf-NP may serve as a promising nose-to-brain drug delivery carrier especially for peptides and proteins. Topics: Acetylcholinesterase; Administration, Intranasal; Amino Acid Sequence; Amyloid beta-Peptides; Animals; Brain; Carbocyanines; Cell Line; Choline O-Acetyltransferase; Coumarins; Drug Delivery Systems; Endocytosis; Humans; Ibotenic Acid; Lactoferrin; Male; Mice; Mice, Inbred ICR; Molecular Sequence Data; Nanoparticles; Neuroprotective Agents; Peptides; Polyesters; Polyethylene Glycols; Rats, Sprague-Dawley; Thiazoles; Tissue Distribution | 2013 |
Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery.
To develop a novel brain drug delivery system based on self-assembled poly(ethyleneglycol)-poly (D,L-lactic-co-glycolic acid) (PEG-PLGA) polymersomes conjugated with lactoferrin (Lf-POS). The brain delivery properties of Lf-POS were investigated and optimized.. Three formulations of Lf-POS, with different densities of lactoferrin on the surface of polymersomes, were prepared and characterized. The brain delivery properties in mice were investigated using 6-coumarin as a fluorescent probe loaded in Lf-POS (6-coumarin-Lf-POS). A neuroprotective peptide, S14G-humanin, was incorporated into Lf-POS (SHN-Lf-POS); a protective effect on the hippocampuses of rats treated by Amyloid-β(25-35) was investigated by immunohistochemical analysis.. The results of brain delivery in mice demonstrated that the optimized number of lactoferrin conjugated per polymersome was 101. This obtains the greatest blood-brain barrier (BBB) permeability surface area(PS) product and percentage of injected dose per gram brain (%ID/g brain). Immunohistochemistry revealed the SHN-Lf-POS had a protective effect on neurons of rats by attenuating the expression of Bax and caspase-3 positive cells. Meanwhile, the activity of choline acetyltransferase (ChAT) had been increased compared with negative controls.. These results suggest that lactoferrin functionalized self-assembled PEG-PLGA polymersomes could be a promising brain-targeting peptide drug delivery system via intravenous administration. Topics: Alzheimer Disease; Animals; Blood-Brain Barrier; Caspase 3; Coumarins; Cryoelectron Microscopy; Drug Carriers; Lactic Acid; Lactoferrin; Liposomes; Male; Mice; Mice, Inbred BALB C; Particle Size; Peptides; Polyethylene Glycols; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Rats; Rats, Sprague-Dawley; Surface Properties; Thiazoles; Tissue Distribution | 2012 |
Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin.
A hepatocellular carcinoma targeting lactoferrin (Lf) modified PEGylated liposome system was developed for improving drug efficacies to hepatic cancer cells. In this present work, PEGylated liposomes (PLS) were successfully prepared by the thin film hydration method combined with peglipid post insertion. Lf was covalently conjugated to the distal end of DSPE-PEG2000-COOH lipid by amide bound and loaded onto PEGylated liposomes surface as the targeting ligand. To confirm the targeting efficacies to hepatic cancer, coumarin-6 and DiR were encapsulated as fluorescent probes. The confocal microscopy and flow cytometry demonstrated that Lf conjugated PEGylated liposomes (Lf-PLS) were efficiently associated by HepG2 cells, while limited interaction was found for liposomes modified with a negative control protein. A similar pharmacokinetic behavior was observed in pharmacokinetics study of the liposomal formulations. Meanwhile, the in vivo imaging of liposomes in HepG2 tumor bearing mice indicated that Lf-PLS achieved more accumulation in tumor compared with PLS without Lf conjugated. The significant in vitro and in vivo results suggested that Lf-PLS might be a promising drug delivery system for hepatocellular carcinoma therapy with low toxicity. Topics: Animals; Carcinoma, Hepatocellular; Cell Line; Cell Line, Tumor; Chemistry, Pharmaceutical; Coumarins; Hep G2 Cells; Humans; Lactoferrin; Liposomes; Liver Neoplasms; Male; Mice; Mice, Inbred BALB C; NIH 3T3 Cells; Polyethylene Glycols; Random Allocation; Thiazoles; Xenograft Model Antitumor Assays | 2012 |
Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery.
In this study, a new drug carrier for brain delivery, lactoferrin-modified procationic liposome, was developed and evaluated in vitro and in vivo. The procationic liposomes (PCLs) were neutral or negatively charged at physiological pH, and when they touched brain capillary endothelial cells with the help of a brain-targeting ligand, lactoferrin (Lf), they were changed into cationic liposomes (CL). The PCLs and lactoferrin-modified procationic liposomes (Lf-PCLs) with different CHETA/Lf ratio were prepared and characterized. The primary brain capillary endothelial cells (BCECs) were cultured to investigate the potential cytotoxicity and uptake of liposomes in vitro. An in vitro model of the blood-brain barrier (BBB), developed by the co-culture of BCECs and astrocytes (ACs), was employed to evaluate the ability and mechanisms of liposomes to cross endothelial cells. The liposome uptake by the mouse brain in vivo was detected by HPLC-fluorescence analysis. The results indicated that compared with the conventional liposomes and CLs, PCL and Lf-PCLs showed an improved performance in the uptake efficiency and cytotoxicity. Besides the uptake mediated by clathrin-dependent endocytosis of PCL, Lf-PCL crossed the BCECs through lipid raft/caveloae-mediated endocytosis. The endocytosis involved in the transport of Lf-PCL crossing BBB was mediated by both receptor- and absorption-mediated transcytosis. Compared with the conventional liposomes, PCL and Lf-PCL-8 (CHETA/Lf ratio=1:8, w/w) were observed to show much improved characteristics of the localization in the brain. This study suggested that Lf-PCL was an available brain drug delivery carrier with potential future application. Topics: Animals; Blood-Brain Barrier; Brain; Coumarins; Dose-Response Relationship, Drug; Drug Carriers; Endothelial Cells; Lactoferrin; Liposomes; Mice; Molecular Structure; Rats; Thiazoles | 2010 |
Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations.
The lactoferrin (Lf) conjugated poly (ethyleneglycol)-poly (lactide) nanoparticle (Lf-NP) was constructed in this paper as a novel biodegradable brain drug delivery system with evaluation of its in vitro and in vivo delivery properties. Lf was thiolated and conjugated to the distal maleimide functions surrounding on the pegylated nanoparticles to form the Lf-NP. The existence of Lf on the surface of Lf-NP was verified by TEM observation and XPS analysis. The Lf ELISA results confirmed the biorecognitive activity of Lf after the coupling procedure and suggested the average number of Lf conjugated on each nanoparticle was around 55. To evaluate the brain delivery properties of the Lf-NP, a fluorescent probe, coumarin-6 was incorporated into it. The uptake of Lf-NP by bEnd.3 cells was shown significantly higher than that of unconjugated nanoparticle (NP). Following an intravenous administration, a near 3 folds of coumarin-6 were found in the mice brain carried by Lf-NP compared to that carried by NP. Cell viability experiment results confirmed good safety of the biodegradable Lf-NP. The significant in vitro and in vivo results suggest that Lf-NP is a promising brain drug delivery system with low toxicity. Topics: Animals; Brain; Cell Line; Cell Survival; Coumarins; Drug Delivery Systems; Endothelial Cells; Lactoferrin; Mice; Nanoparticles; Polyesters; Polyethylene Glycols; Thiazoles | 2009 |