lactoferrin has been researched along with 1-2-oleoylphosphatidylcholine* in 2 studies
2 other study(ies) available for lactoferrin and 1-2-oleoylphosphatidylcholine
Article | Year |
---|---|
Entry of a Six-Residue Antimicrobial Peptide Derived from Lactoferricin B into Single Vesicles and Escherichia coli Cells without Damaging their Membranes.
Lactoferricin B (LfcinB) and shorter versions of this peptide have antimicrobial activity. However, the elementary processes of interactions of these peptides with lipid membranes and bacteria are still not well understood. To elucidate the mechanism of their antimicrobial activity, we investigated the interactions of LfcinB (4-9) (its sequence of RRWQWR) with Escherichia coli cells and giant unilamellar vesicles (GUVs). LfcinB (4-9) and lissamine rhodamine B red-labeled LfcinB (4-9) (Rh-LfcinB (4-9)) did not induce an influx of a membrane-impermeant fluorescent probe, SYTOX green, from the outside of E. coli cells into their cytoplasm, indicating that no damage occurred in their plasma membrane. To examine the activity of LfcinB (4-9) to enter E. coli cytoplasm, we investigated the interaction of Rh-LfcinB (4-9) with single cells of E. coli containing calcein using confocal microscopy. We found that Rh-LfcinB (4-9) entered the cytoplasm without leakage of calcein. Next, we investigated the interactions of Rh-LfcinB (4-9) with single GUVs of dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylcholine (DOPC) mixtures containing a fluorescent probe, Alexa Fluor 647 hydrazide (AF647), using the single GUV method. The results indicate that Rh-LfcinB (4-9) outside the GUV translocated through the GUV membrane and entered its lumen without leakage of AF647. Interaction of Rh-LfcinB (4-9) with DNA increased its fluorescence intensity greatly. Therefore, we can conclude that Rh-LfcinB (4-9) can translocate across lipid membrane regions of the plasma membrane of E. coli cells to enter their cytoplasm without leakage of calcein and its antimicrobial activity is not due to damage of their plasma membranes. Topics: Antimicrobial Cationic Peptides; Cell Membrane; Cytoplasm; Escherichia coli; Lactoferrin; Liposomes; Phosphatidylcholines; Phosphatidylglycerols | 2017 |
Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles.
Enzymatic digestion of bovine lactoferrin generates lactoferricin B (Lfcin B), a 25-mer peptide with strong antimicrobial activity of unknown mechanism. To elucidate the mechanistic basis of Lfcin B bactericidal activity, we investigated the interaction of Lfcin B with Escherichia coli and liposomes of lipid membranes. Lfcin B induced the influx of a membrane-impermeant fluorescent probe, SYTOX green, from the outside of E. coli into its cytoplasm. Lfcin B induced gradual leakage of calcein from large unilamellar vesicles (LUVs) of dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) membranes. To clarify the cause of Lfcin B-induced leakage of calcein from the LUVs, we used the single giant unilamellar vesicle (GUV) method to investigate the interaction of Lfcin B with calcein-containing DOPG/DOPC-GUVs. We observed that a rapid leakage of calcein from a GUV started stochastically; statistical analysis provided a rate constant for Lfcin B-induced pore formation, kp. On the other hand, phase-contrast microscopic images revealed that Lfcin B induced a rapid leakage of sucrose from the single GUVs with concomitant appearance of a spherical GUV of smaller diameter. Because of the very fast leakage, and at the present time resolution of the experiments (33 ms), we could not follow the evolution of pore nor the process of the structural changes of the GUV. Here we used the term "local rupture" to express the rapid leakage of sucrose and determined the rate constant of local rupture, kL. On the basis of the comparison between kp and kL, we concluded that the leakage of calcein from single GUVs occurred as a result of a local rupture in the GUVs and that smaller pores inducing leakage of calcein were not formed before the local rupture. The results of the effect of the surface charge density of lipid membranes and that of salt concentration in buffer on kp clearly show that kp increases with an increase in the extent of electrostatic interactions due to the surface charges. Analysis of Lfcin B-induced shape changes indicated that the binding of Lfcin B increased the area of the outer monolayer of GUVs. These results indicate that Lfcin B-induced damage of the plasma membrane of E. coli with its concomitant rapid leakage of internal contents is a key factor for the bactericidal activity of LfcinB. Topics: Amino Acid Sequence; Animals; Anti-Bacterial Agents; Cattle; Cell Membrane Permeability; Escherichia coli; Escherichia coli Infections; Fluoresceins; Fluorescent Dyes; Humans; Lactoferrin; Molecular Sequence Data; Organic Chemicals; Phosphatidylcholines; Phosphatidylglycerols; Static Electricity; Sucrose; Unilamellar Liposomes | 2015 |