lactic acid and amphotericin b

lactic acid has been researched along with amphotericin b in 24 studies

Research

Studies (24)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (8.33)18.2507
2000's8 (33.33)29.6817
2010's14 (58.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Benoit, JP; Monjour, L; Venier-Julienne, MC; Vouldoukis, I1
Benoît, JP; Venier-Julienne, MC1
Bonaly, R; Coulon, J; Fessi, H; Kassab, R; Menaucourt, J; Parrot-Lopez, H1
Alunda, JM; Bolás, F; Dea, MA; Rama, S; Sánchez-Brunete, JA; Torrado, JJ; Torrado-Santiago, S1
Alunda, JM; Bolás-Fernandez, F; Dea-Ayuela, MA; Espada-Fernández, R; Ordóñez-Gutiérrez, L; Torrado, JJ1
Bang, JY; Choi, KC; Kim, C; Kim, PI; Song, CE1
Bang, JY; Cho, KR; Choi, KC; Chung, WT; Kim, C; Kim, PI; Lee, SR; Park, WD; Song, CE1
Amaral, AC; Bentes, R; Bocca, AL; Felipe, MS; Lacava, ZG; Morais, PC; Nunes, J; Peixoto, DL; Primo, FL; Ribeiro, AM; Simioni, AR; Tedesco, AC; Titze-de-Almeida, R1
Italia, JL; Ravi Kumar, MN; Singh, D; Yahya, MM1
Jain, NK; Nahar, M1
Morilla, MJ; Romero, EL1
Jain, JP; Kumar, N1
Misra, A; Pandya, S; Verma, RK1
Cos, P; Feijens, PB; Kayaert, P; Ludwig, A; Maes, L; Matheeussen, A; Paulussen, C; Rombaut, P; Van de Ven, H; Van den Mooter, G; Weyenberg, W1
Báo, SN; Cintra e Silva, Dde O; de Carvalho, RF; de Souza Filho, J; Lacava, ZG; Martins, OP; Miranda-Vilela, AL; Ribeiro, IF; Sampaio, RN; Tedesco, AC1
Dasararaju, R; Many, WJ; Samant, JS1
Carraro, TC; Khalil, NM; Mainardes, RM1
Barros, D; Cordeiro-da-Silva, A; Costa Lima, SA1
Amaral, AC; Báo, SN; Bocca, AL; Borin, MF; Cardoso, VN; Cintra, DO; de Vasconcelos, NM; Felipe, MS; Fernandes, SO; Fuscaldi, LL; Jerônimo, MS; Martins, OP; Mortari, MR; Nascimento, AL; Pires Júnior, OR; R-Santos, L; Siqueira, IM; Souza, AC; Tedesco, AC; Titze-de-Almeida, R1
AlQuadeib, BT; Horrocks, B; Radwan, MA; Šiller, L; Wright, MC1
Auler, ME; de Camargo, LEA; Khalil, NM; Ludwig, DB; Mainardes, RM1
Adhikari, VP; Dong, Y; Du, Y; Li, D; Xie, S; Yang, M1
Alanazi, AM; Jabeen, M; Khan, AA; Khan, S; Malik, A1

Reviews

1 review(s) available for lactic acid and amphotericin b

ArticleYear
Nanotechnological approaches against Chagas disease.
    Advanced drug delivery reviews, 2010, Mar-18, Volume: 62, Issue:4-5

    Topics: Amphotericin B; Animals; Chagas Disease; Chemistry, Pharmaceutical; Developing Countries; Drug Delivery Systems; Heart; Humans; Lactic Acid; Liposomes; Microspheres; Nanoparticles; Nanotechnology; Nitroimidazoles; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Trypanocidal Agents; Trypanosoma cruzi

2010

Other Studies

23 other study(ies) available for lactic acid and amphotericin b

ArticleYear
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
In vitro study of the anti-leishmanial activity of biodegradable nanoparticles.
    Journal of drug targeting, 1995, Volume: 3, Issue:1

    Topics: Amphotericin B; Animals; Antiprotozoal Agents; Biocompatible Materials; Cell Survival; Drug Carriers; Hydrogen Peroxide; Lactic Acid; Leishmania infantum; Leishmaniasis, Visceral; Macrophages; Mice; Mice, Inbred BALB C; Microspheres; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Polymers; Trehalose

1995
Preparation, purification and morphology of polymeric nanoparticles as drug carriers.
    Pharmaceutica acta Helvetiae, 1996, Volume: 71, Issue:2

    Topics: Amphotericin B; Drug Carriers; Lactic Acid; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Polymers; Progesterone

1996
Molecular recognition by Kluyveromyces of amphotericin B-loaded, galactose-tagged, poly (lactic acid) microspheres.
    Bioorganic & medicinal chemistry, 2002, Volume: 10, Issue:6

    Topics: Amphotericin B; Antifungal Agents; Drug Carriers; Galactose; Glycolates; Kluyveromyces; Lactic Acid; Logistic Models; Microscopy, Atomic Force; Microspheres; Molecular Structure; Molecular Weight; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Polymers; Substrate Specificity

2002
Influence of the vehicle on the properties and efficacy of microparticles containing amphotericin B.
    Journal of drug targeting, 2005, Volume: 13, Issue:4

    Topics: Albumins; Amphotericin B; Animals; Antigens, Protozoan; Antiprotozoal Agents; Cricetinae; Drug Carriers; Drug Compounding; Lactic Acid; Leishmania infantum; Leishmaniasis, Visceral; Liver; Male; Mesocricetus; Microspheres; Particle Size; Polyanhydrides; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Polymers; Spleen

2005
In vitro effect of new formulations of amphotericin B on amastigote and promastigote forms of Leishmania infantum.
    International journal of antimicrobial agents, 2007, Volume: 30, Issue:4

    Topics: Albumins; Amphotericin B; Animals; Antiprotozoal Agents; Cell Line; Chemistry, Pharmaceutical; Drug Delivery Systems; Glycolates; Lactic Acid; Leishmania infantum; Life Cycle Stages; Macrophages; Mice; Microspheres; Parasitic Sensitivity Tests; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer

2007
Amphotericin B-incorporated polymeric micelles composed of poly(d,l-lactide-co-glycolide)/dextran graft copolymer.
    International journal of pharmaceutics, 2008, May-01, Volume: 355, Issue:1-2

    Topics: Amphotericin B; Antifungal Agents; Candida albicans; Dextrans; Lactic Acid; Magnetic Resonance Spectroscopy; Micelles; Microscopy, Electron, Transmission; Particle Size; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; X-Ray Diffraction

2008
Cytotoxicity of amphotericin B-incorporated polymeric micelles composed of poly(DL-lactide-co-glycolide)/dextran graft copolymer.
    Archives of pharmacal research, 2008, Volume: 31, Issue:11

    Topics: Amphotericin B; Antifungal Agents; Candida albicans; Chemistry, Pharmaceutical; Dextrans; Drug Compounding; Erythrocytes; Hemolysis; Humans; In Vitro Techniques; Lactic Acid; Micelles; Microbial Sensitivity Tests; Microscopy, Electron, Transmission; Particle Size; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Spectrophotometry, Ultraviolet

2008
Amphotericin B in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis.
    The Journal of antimicrobial chemotherapy, 2009, Volume: 63, Issue:3

    Topics: Amphotericin B; Animals; Body Weight; Bone Marrow; Colony Count, Microbial; Deoxycholic Acid; Drug Combinations; Female; Kidney; Lactic Acid; Liver; Lung; Mice; Mice, Inbred BALB C; Nanoparticles; Paracoccidioides; Paracoccidioidomycosis; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Succimer; Treatment Outcome

2009
Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone.
    Pharmaceutical research, 2009, Volume: 26, Issue:6

    Topics: Amphotericin B; Animals; Antifungal Agents; Biological Availability; Blood Urea Nitrogen; Creatine; Hemolysis; Lactic Acid; Male; Nanoparticles; Nanotechnology; Particle Size; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Rats; Rats, Sprague-Dawley

2009
Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles.
    Pharmaceutical research, 2009, Volume: 26, Issue:12

    Topics: Amphotericin B; Antiprotozoal Agents; Drug Delivery Systems; Flow Cytometry; Humans; Lactic Acid; Leishmania donovani; Macrophages; Mannose; Microscopy, Electron, Transmission; Molecular Structure; Nanoparticles; Particle Size; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Spectroscopy, Fourier Transform Infrared; Surface Properties

2009
Development of amphotericin B loaded polymersomes based on (PEG)(3)-PLA co-polymers: Factors affecting size and in vitro evaluation.
    European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 2010, Aug-11, Volume: 40, Issue:5

    Topics: Amphotericin B; Animals; Antifungal Agents; Biological Availability; Drug Carriers; Drug Compounding; Drug Delivery Systems; Emulsions; Excipients; Fluorescein-5-isothiocyanate; Hemolysis; Lactic Acid; Male; Microspheres; Nanotechnology; Particle Size; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Polymers; Rats; Surface-Active Agents; Technology, Pharmaceutical

2010
Loading and release of amphotericin-B from biodegradable poly(lactic-co-glycolic acid) nanoparticles.
    Journal of biomedical nanotechnology, 2011, Volume: 7, Issue:1

    Topics: Absorbable Implants; Absorption; Amphotericin B; Antifungal Agents; Delayed-Action Preparations; Diffusion; Lactic Acid; Nanocapsules; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer

2011
PLGA nanoparticles and nanosuspensions with amphotericin B: Potent in vitro and in vivo alternatives to Fungizone and AmBisome.
    Journal of controlled release : official journal of the Controlled Release Society, 2012, Aug-10, Volume: 161, Issue:3

    Topics: Amphotericin B; Animals; Antifungal Agents; Aspergillosis; Cell Line; Colony Count, Microbial; Erythrocytes; Female; Fungi; Hemolysis; Humans; Kidney; Lactic Acid; Leishmania infantum; Liposomes; Liver; Mice; Nanoparticles; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Spleen

2012
Leishmanicidal activity of amphotericin B encapsulated in PLGA-DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice.
    Experimental parasitology, 2013, Volume: 135, Issue:2

    Topics: Amphotericin B; Animals; Antiprotozoal Agents; Biological Availability; Drug Delivery Systems; Drug Stability; Female; Lactic Acid; Leishmania mexicana; Leishmaniasis, Cutaneous; Mice; Mice, Inbred C57BL; Microscopy, Electron, Scanning; Microscopy, Electron, Transmission; Nanoparticles; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Succimer

2013
Perplexity of a fungus in the sinus.
    The American journal of medicine, 2014, Volume: 127, Issue:1

    Topics: Adolescent; Amphotericin B; Antifungal Agents; Ascomycota; Benzenesulfonates; Brain Abscess; Central Nervous System Fungal Infections; Chronic Disease; Coloring Agents; Debridement; Epidural Abscess; Frontal Lobe; Frontal Sinus; Humans; Lactic Acid; Male; Phenols; Pyrimidines; Sinusitis; Treatment Outcome; Triazoles; Voriconazole

2014
Amphotericin B-loaded polymeric nanoparticles: formulation optimization by factorial design.
    Pharmaceutical development and technology, 2016, Volume: 21, Issue:2

    Topics: Amphotericin B; Chemistry, Pharmaceutical; Drug Carriers; Lactic Acid; Nanoparticles; Particle Size; Polyethylene Glycols; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Polymers

2016
Surface functionalization of polymeric nanospheres modulates macrophage activation: relevance in leishmaniasis therapy.
    Nanomedicine (London, England), 2015, Volume: 10, Issue:3

    Topics: Amphotericin B; Animals; Antiprotozoal Agents; Cells, Cultured; Cytokines; Drug Carriers; Lactic Acid; Leishmaniasis; Macrophage Activation; Macrophages; Male; Mannans; Mannose; Mice; Mice, Inbred BALB C; Nanospheres; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Polymers

2015
Activity and in vivo tracking of Amphotericin B loaded PLGA nanoparticles.
    European journal of medicinal chemistry, 2015, May-05, Volume: 95

    Topics: Amphotericin B; Animals; Antifungal Agents; Deoxycholic Acid; Drug Carriers; Drug Combinations; Drug Liberation; Lactic Acid; Materials Testing; Mice; Nanoparticles; Paracoccidioides; Paracoccidioidomycosis; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Safety; Succimer; Tissue Distribution

2015
Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats.
    Drug delivery, 2017, Volume: 24, Issue:1

    Topics: Administration, Oral; Amphotericin B; Animals; Antifungal Agents; Biological Availability; Biomarkers; Blood Urea Nitrogen; Candida albicans; Creatinine; Drug Carriers; Drug Compounding; Glycyrrhizic Acid; Hemolysis; Kidney Diseases; Lactic Acid; Microbial Sensitivity Tests; Nanoparticles; Polyethylene Glycols; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Rats, Sprague-Dawley; Technology, Pharmaceutical

2017
Antifungal Activity of Chitosan-Coated Poly(lactic-co-glycolic) Acid Nanoparticles Containing Amphotericin B.
    Mycopathologia, 2018, Volume: 183, Issue:4

    Topics: Amphotericin B; Animals; Antifungal Agents; Candida; Candidemia; Candidiasis, Vulvovaginal; Chitosan; Drug Carriers; Female; Humans; Lactic Acid; Microbial Sensitivity Tests; Nanoparticles; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Trichosporon; Urinary Tract Infections

2018
The synergistic fungicidal effect of low-frequency and low-intensity ultrasound with amphotericin B-loaded nanoparticles on C. albicans in vitro.
    International journal of pharmaceutics, 2018, May-05, Volume: 542, Issue:1-2

    Topics: Amphotericin B; Animals; Antifungal Agents; Candida albicans; Lactic Acid; Mice; Microbial Sensitivity Tests; Microscopy, Electron, Scanning; Nanoparticles; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Reactive Oxygen Species; Skin; Sonication; Ultrasonic Waves

2018
Additive potential of combination therapy against cryptococcosis employing a novel amphotericin B and fluconazole loaded dual delivery system.
    European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 2018, Jul-01, Volume: 119

    Topics: Amphotericin B; Animals; Antifungal Agents; Cryptococcosis; Cryptococcus neoformans; Drug Combinations; Drug Delivery Systems; Drug Liberation; Drug Synergism; Fluconazole; Lactic Acid; Male; Mice; Microbial Sensitivity Tests; Microspheres; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer

2018