lactic acid has been researched along with amphotericin b in 24 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (8.33) | 18.2507 |
2000's | 8 (33.33) | 29.6817 |
2010's | 14 (58.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Benoit, JP; Monjour, L; Venier-Julienne, MC; Vouldoukis, I | 1 |
Benoît, JP; Venier-Julienne, MC | 1 |
Bonaly, R; Coulon, J; Fessi, H; Kassab, R; Menaucourt, J; Parrot-Lopez, H | 1 |
Alunda, JM; Bolás, F; Dea, MA; Rama, S; Sánchez-Brunete, JA; Torrado, JJ; Torrado-Santiago, S | 1 |
Alunda, JM; Bolás-Fernandez, F; Dea-Ayuela, MA; Espada-Fernández, R; Ordóñez-Gutiérrez, L; Torrado, JJ | 1 |
Bang, JY; Choi, KC; Kim, C; Kim, PI; Song, CE | 1 |
Bang, JY; Cho, KR; Choi, KC; Chung, WT; Kim, C; Kim, PI; Lee, SR; Park, WD; Song, CE | 1 |
Amaral, AC; Bentes, R; Bocca, AL; Felipe, MS; Lacava, ZG; Morais, PC; Nunes, J; Peixoto, DL; Primo, FL; Ribeiro, AM; Simioni, AR; Tedesco, AC; Titze-de-Almeida, R | 1 |
Italia, JL; Ravi Kumar, MN; Singh, D; Yahya, MM | 1 |
Jain, NK; Nahar, M | 1 |
Morilla, MJ; Romero, EL | 1 |
Jain, JP; Kumar, N | 1 |
Misra, A; Pandya, S; Verma, RK | 1 |
Cos, P; Feijens, PB; Kayaert, P; Ludwig, A; Maes, L; Matheeussen, A; Paulussen, C; Rombaut, P; Van de Ven, H; Van den Mooter, G; Weyenberg, W | 1 |
Báo, SN; Cintra e Silva, Dde O; de Carvalho, RF; de Souza Filho, J; Lacava, ZG; Martins, OP; Miranda-Vilela, AL; Ribeiro, IF; Sampaio, RN; Tedesco, AC | 1 |
Dasararaju, R; Many, WJ; Samant, JS | 1 |
Carraro, TC; Khalil, NM; Mainardes, RM | 1 |
Barros, D; Cordeiro-da-Silva, A; Costa Lima, SA | 1 |
Amaral, AC; Báo, SN; Bocca, AL; Borin, MF; Cardoso, VN; Cintra, DO; de Vasconcelos, NM; Felipe, MS; Fernandes, SO; Fuscaldi, LL; Jerônimo, MS; Martins, OP; Mortari, MR; Nascimento, AL; Pires Júnior, OR; R-Santos, L; Siqueira, IM; Souza, AC; Tedesco, AC; Titze-de-Almeida, R | 1 |
AlQuadeib, BT; Horrocks, B; Radwan, MA; Šiller, L; Wright, MC | 1 |
Auler, ME; de Camargo, LEA; Khalil, NM; Ludwig, DB; Mainardes, RM | 1 |
Adhikari, VP; Dong, Y; Du, Y; Li, D; Xie, S; Yang, M | 1 |
Alanazi, AM; Jabeen, M; Khan, AA; Khan, S; Malik, A | 1 |
1 review(s) available for lactic acid and amphotericin b
Article | Year |
---|---|
Nanotechnological approaches against Chagas disease.
Topics: Amphotericin B; Animals; Chagas Disease; Chemistry, Pharmaceutical; Developing Countries; Drug Delivery Systems; Heart; Humans; Lactic Acid; Liposomes; Microspheres; Nanoparticles; Nanotechnology; Nitroimidazoles; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Trypanocidal Agents; Trypanosoma cruzi | 2010 |
23 other study(ies) available for lactic acid and amphotericin b
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
In vitro study of the anti-leishmanial activity of biodegradable nanoparticles.
Topics: Amphotericin B; Animals; Antiprotozoal Agents; Biocompatible Materials; Cell Survival; Drug Carriers; Hydrogen Peroxide; Lactic Acid; Leishmania infantum; Leishmaniasis, Visceral; Macrophages; Mice; Mice, Inbred BALB C; Microspheres; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Polymers; Trehalose | 1995 |
Preparation, purification and morphology of polymeric nanoparticles as drug carriers.
Topics: Amphotericin B; Drug Carriers; Lactic Acid; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Polymers; Progesterone | 1996 |
Molecular recognition by Kluyveromyces of amphotericin B-loaded, galactose-tagged, poly (lactic acid) microspheres.
Topics: Amphotericin B; Antifungal Agents; Drug Carriers; Galactose; Glycolates; Kluyveromyces; Lactic Acid; Logistic Models; Microscopy, Atomic Force; Microspheres; Molecular Structure; Molecular Weight; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Polymers; Substrate Specificity | 2002 |
Influence of the vehicle on the properties and efficacy of microparticles containing amphotericin B.
Topics: Albumins; Amphotericin B; Animals; Antigens, Protozoan; Antiprotozoal Agents; Cricetinae; Drug Carriers; Drug Compounding; Lactic Acid; Leishmania infantum; Leishmaniasis, Visceral; Liver; Male; Mesocricetus; Microspheres; Particle Size; Polyanhydrides; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Polymers; Spleen | 2005 |
In vitro effect of new formulations of amphotericin B on amastigote and promastigote forms of Leishmania infantum.
Topics: Albumins; Amphotericin B; Animals; Antiprotozoal Agents; Cell Line; Chemistry, Pharmaceutical; Drug Delivery Systems; Glycolates; Lactic Acid; Leishmania infantum; Life Cycle Stages; Macrophages; Mice; Microspheres; Parasitic Sensitivity Tests; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer | 2007 |
Amphotericin B-incorporated polymeric micelles composed of poly(d,l-lactide-co-glycolide)/dextran graft copolymer.
Topics: Amphotericin B; Antifungal Agents; Candida albicans; Dextrans; Lactic Acid; Magnetic Resonance Spectroscopy; Micelles; Microscopy, Electron, Transmission; Particle Size; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; X-Ray Diffraction | 2008 |
Cytotoxicity of amphotericin B-incorporated polymeric micelles composed of poly(DL-lactide-co-glycolide)/dextran graft copolymer.
Topics: Amphotericin B; Antifungal Agents; Candida albicans; Chemistry, Pharmaceutical; Dextrans; Drug Compounding; Erythrocytes; Hemolysis; Humans; In Vitro Techniques; Lactic Acid; Micelles; Microbial Sensitivity Tests; Microscopy, Electron, Transmission; Particle Size; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Spectrophotometry, Ultraviolet | 2008 |
Amphotericin B in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis.
Topics: Amphotericin B; Animals; Body Weight; Bone Marrow; Colony Count, Microbial; Deoxycholic Acid; Drug Combinations; Female; Kidney; Lactic Acid; Liver; Lung; Mice; Mice, Inbred BALB C; Nanoparticles; Paracoccidioides; Paracoccidioidomycosis; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Succimer; Treatment Outcome | 2009 |
Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone.
Topics: Amphotericin B; Animals; Antifungal Agents; Biological Availability; Blood Urea Nitrogen; Creatine; Hemolysis; Lactic Acid; Male; Nanoparticles; Nanotechnology; Particle Size; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Rats; Rats, Sprague-Dawley | 2009 |
Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles.
Topics: Amphotericin B; Antiprotozoal Agents; Drug Delivery Systems; Flow Cytometry; Humans; Lactic Acid; Leishmania donovani; Macrophages; Mannose; Microscopy, Electron, Transmission; Molecular Structure; Nanoparticles; Particle Size; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Spectroscopy, Fourier Transform Infrared; Surface Properties | 2009 |
Development of amphotericin B loaded polymersomes based on (PEG)(3)-PLA co-polymers: Factors affecting size and in vitro evaluation.
Topics: Amphotericin B; Animals; Antifungal Agents; Biological Availability; Drug Carriers; Drug Compounding; Drug Delivery Systems; Emulsions; Excipients; Fluorescein-5-isothiocyanate; Hemolysis; Lactic Acid; Male; Microspheres; Nanotechnology; Particle Size; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Polymers; Rats; Surface-Active Agents; Technology, Pharmaceutical | 2010 |
Loading and release of amphotericin-B from biodegradable poly(lactic-co-glycolic acid) nanoparticles.
Topics: Absorbable Implants; Absorption; Amphotericin B; Antifungal Agents; Delayed-Action Preparations; Diffusion; Lactic Acid; Nanocapsules; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer | 2011 |
PLGA nanoparticles and nanosuspensions with amphotericin B: Potent in vitro and in vivo alternatives to Fungizone and AmBisome.
Topics: Amphotericin B; Animals; Antifungal Agents; Aspergillosis; Cell Line; Colony Count, Microbial; Erythrocytes; Female; Fungi; Hemolysis; Humans; Kidney; Lactic Acid; Leishmania infantum; Liposomes; Liver; Mice; Nanoparticles; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Spleen | 2012 |
Leishmanicidal activity of amphotericin B encapsulated in PLGA-DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice.
Topics: Amphotericin B; Animals; Antiprotozoal Agents; Biological Availability; Drug Delivery Systems; Drug Stability; Female; Lactic Acid; Leishmania mexicana; Leishmaniasis, Cutaneous; Mice; Mice, Inbred C57BL; Microscopy, Electron, Scanning; Microscopy, Electron, Transmission; Nanoparticles; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Succimer | 2013 |
Perplexity of a fungus in the sinus.
Topics: Adolescent; Amphotericin B; Antifungal Agents; Ascomycota; Benzenesulfonates; Brain Abscess; Central Nervous System Fungal Infections; Chronic Disease; Coloring Agents; Debridement; Epidural Abscess; Frontal Lobe; Frontal Sinus; Humans; Lactic Acid; Male; Phenols; Pyrimidines; Sinusitis; Treatment Outcome; Triazoles; Voriconazole | 2014 |
Amphotericin B-loaded polymeric nanoparticles: formulation optimization by factorial design.
Topics: Amphotericin B; Chemistry, Pharmaceutical; Drug Carriers; Lactic Acid; Nanoparticles; Particle Size; Polyethylene Glycols; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Polymers | 2016 |
Surface functionalization of polymeric nanospheres modulates macrophage activation: relevance in leishmaniasis therapy.
Topics: Amphotericin B; Animals; Antiprotozoal Agents; Cells, Cultured; Cytokines; Drug Carriers; Lactic Acid; Leishmaniasis; Macrophage Activation; Macrophages; Male; Mannans; Mannose; Mice; Mice, Inbred BALB C; Nanospheres; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Polymers | 2015 |
Activity and in vivo tracking of Amphotericin B loaded PLGA nanoparticles.
Topics: Amphotericin B; Animals; Antifungal Agents; Deoxycholic Acid; Drug Carriers; Drug Combinations; Drug Liberation; Lactic Acid; Materials Testing; Mice; Nanoparticles; Paracoccidioides; Paracoccidioidomycosis; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Safety; Succimer; Tissue Distribution | 2015 |
Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats.
Topics: Administration, Oral; Amphotericin B; Animals; Antifungal Agents; Biological Availability; Biomarkers; Blood Urea Nitrogen; Candida albicans; Creatinine; Drug Carriers; Drug Compounding; Glycyrrhizic Acid; Hemolysis; Kidney Diseases; Lactic Acid; Microbial Sensitivity Tests; Nanoparticles; Polyethylene Glycols; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Rats, Sprague-Dawley; Technology, Pharmaceutical | 2017 |
Antifungal Activity of Chitosan-Coated Poly(lactic-co-glycolic) Acid Nanoparticles Containing Amphotericin B.
Topics: Amphotericin B; Animals; Antifungal Agents; Candida; Candidemia; Candidiasis, Vulvovaginal; Chitosan; Drug Carriers; Female; Humans; Lactic Acid; Microbial Sensitivity Tests; Nanoparticles; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Trichosporon; Urinary Tract Infections | 2018 |
The synergistic fungicidal effect of low-frequency and low-intensity ultrasound with amphotericin B-loaded nanoparticles on C. albicans in vitro.
Topics: Amphotericin B; Animals; Antifungal Agents; Candida albicans; Lactic Acid; Mice; Microbial Sensitivity Tests; Microscopy, Electron, Scanning; Nanoparticles; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Reactive Oxygen Species; Skin; Sonication; Ultrasonic Waves | 2018 |
Additive potential of combination therapy against cryptococcosis employing a novel amphotericin B and fluconazole loaded dual delivery system.
Topics: Amphotericin B; Animals; Antifungal Agents; Cryptococcosis; Cryptococcus neoformans; Drug Combinations; Drug Delivery Systems; Drug Liberation; Drug Synergism; Fluconazole; Lactic Acid; Male; Mice; Microbial Sensitivity Tests; Microspheres; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer | 2018 |