labetalol has been researched along with sulfasalazine in 14 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (35.71) | 29.6817 |
2010's | 9 (64.29) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Faller, B; Wohnsland, F | 1 |
Alvarez-Pedraglio, A; Colmenarejo, G; Lavandera, JL | 1 |
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M | 1 |
Du-Cuny, L; Mash, EA; Meuillet, EJ; Moses, S; Powis, G; Song, Z; Zhang, S | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Campillo, NE; Guerra, A; Páez, JA | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Chen, X; Lin, X; Skolnik, S; Wang, J | 1 |
Annand, R; Gozalbes, R; Jacewicz, M; Pineda-Lucena, A; Tsaioun, K | 1 |
Ambroso, JL; Ayrton, AD; Baines, IA; Bloomer, JC; Chen, L; Clarke, SE; Ellens, HM; Harrell, AW; Lovatt, CA; Reese, MJ; Sakatis, MZ; Taylor, MA; Yang, EY | 1 |
Bellman, K; Knegtel, RM; Settimo, L | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
1 review(s) available for labetalol and sulfasalazine
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
13 other study(ies) available for labetalol and sulfasalazine
Article | Year |
---|---|
High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes.
Topics: Alkanes; Humans; Hydrogen-Ion Concentration; Intestinal Absorption; Membranes, Artificial; Octanols; Permeability; Pharmaceutical Preparations; Solubility; Water | 2001 |
Cheminformatic models to predict binding affinities to human serum albumin.
Topics: Adrenergic beta-Antagonists; Antidepressive Agents, Tricyclic; Chromatography, Affinity; Cyclooxygenase Inhibitors; Databases, Factual; Humans; Hydrophobic and Hydrophilic Interactions; Penicillins; Pharmaceutical Preparations; Protein Binding; Quantitative Structure-Activity Relationship; Reproducibility of Results; Serum Albumin; Steroids | 2001 |
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship | 2008 |
Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain.
Topics: Antineoplastic Agents; Blood Proteins; Caco-2 Cells; Cell Membrane Permeability; Computer Simulation; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Phosphoproteins; Protein Binding; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-akt; Quantitative Structure-Activity Relationship | 2009 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model.
Topics: Adenosine; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Sub-Family B Member 4; ATP-Binding Cassette Transporters; Biological Transport; Caco-2 Cells; Chromatography, Liquid; Dibenzocycloheptenes; Diketopiperazines; Drug Discovery; Heterocyclic Compounds, 4 or More Rings; Humans; Intestinal Absorption; Mass Spectrometry; Models, Biological; Neoplasm Proteins; Pharmaceutical Preparations; Predictive Value of Tests; Propionates; Quinolines; Substrate Specificity | 2011 |
QSAR-based permeability model for drug-like compounds.
Topics: Caco-2 Cells; Cell Membrane Permeability; Drug Discovery; Humans; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2011 |
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
Topics: Chemical and Drug Induced Liver Injury; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Decision Trees; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Glutathione; Humans; Liver; Pharmaceutical Preparations; Protein Binding | 2012 |
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation | 2014 |