labetalol has been researched along with spironolactone in 10 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (10.00) | 18.2507 |
2000's | 2 (20.00) | 29.6817 |
2010's | 6 (60.00) | 24.3611 |
2020's | 1 (10.00) | 2.80 |
Authors | Studies |
---|---|
Topliss, JG; Yoshida, F | 1 |
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Campillo, NE; Guerra, A; Páez, JA | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Chen, M; Fang, H; Liu, Z; Shi, Q; Tong, W; Vijay, V | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Allen, LV; Erickson, MA | 1 |
Aboul-Enein, HY; Ali, I; ALOthman, ZA; Alsheetan, KM | 1 |
1 review(s) available for labetalol and spironolactone
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
9 other study(ies) available for labetalol and spironolactone
Article | Year |
---|---|
QSAR model for drug human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship | 2000 |
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
FDA-approved drug labeling for the study of drug-induced liver injury.
Topics: Animals; Benchmarking; Biomarkers, Pharmacological; Chemical and Drug Induced Liver Injury; Drug Design; Drug Labeling; Drug-Related Side Effects and Adverse Reactions; Humans; Pharmaceutical Preparations; Reproducibility of Results; United States; United States Food and Drug Administration | 2011 |
Stability of labetalol hydrochloride, metoprolol tartrate, verapamil hydrochloride, and spironolactone with hydrochlorothiazide in extemporaneously compounded oral liquids.
Topics: Antihypertensive Agents; Calcium Channel Blockers; Chromatography, High Pressure Liquid; Diuretics; Dosage Forms; Drug Compounding; Drug Stability; Humans; Hydrochlorothiazide; Labetalol; Metoprolol; Sodium Chloride Symporter Inhibitors; Spironolactone; Suspensions; Verapamil | 1996 |
Applications of shun shell column and nanocomposite sorbent for analysis of eleven anti-hypertensive in human plasma.
Topics: Adsorption; Antihypertensive Agents; Chromatography, High Pressure Liquid; Diltiazem; Furosemide; Humans; Hydrochlorothiazide; Irbesartan; Iron; Labetalol; Limit of Detection; Losartan; Metal Nanoparticles; Methyldopa; Nanocomposites; Polyvinyl Alcohol; Prazosin; Propranolol; Reproducibility of Results; Solid Phase Microextraction; Spironolactone; Valsartan | 2020 |