l-2-(carboxypropyl)glycine has been researched along with eglumetad* in 3 studies
3 other study(ies) available for l-2-(carboxypropyl)glycine and eglumetad
Article | Year |
---|---|
(2S,1'S,2'S,3'R)-2-(2'-carboxy-3'-methylcyclopropyl) glycine is a potent and selective metabotropic group 2 receptor agonist with anxiolytic properties.
The asymmetric synthesis and biological activity of (2S,1'S,2'S,3'R)-2-(2'-carboxy-3'-methylcyclopropyl) glycine 7 and its epimer at the C3' center 6 are described. Compound 7 is a highly potent and selective agonist for group 2 metabotropric glutamate receptors (mGluRs). It is also systemically 4 orders of magnitude more active in the fear-potentiated startle model of anxiety in rats than the rigid constrained bicyclic system LY354740. Therefore, we have shown that high molecular complexity of conformationally constrained bicyclic systems is not a requirement to achieve highly selective and potent group 2 mGluRs agonists. Topics: Animals; Anti-Anxiety Agents; Bridged Bicyclo Compounds; Cell Line; Cyclopropanes; Glycine; Ligands; Models, Molecular; Rats; Receptors, Metabotropic Glutamate; Reflex, Startle; Stereoisomerism | 2002 |
Characterization of [(3)H]-LY354740 binding to rat mGlu2 and mGlu3 receptors expressed in CHO cells using semliki forest virus vectors.
The binding properties of [(3)H]-LY354740 were characterized on rat metabotropic glutamate receptors mGlu2 and mGlu3 expressed in Chinese hamster ovary (CHO) cells using Semliki Forest virus vectors. The saturation isotherm gave K(D) values of 20+/-5 and 53+/-8 nM and B(max) values of 474+/-161 and 667+/-89 fmol/mg protein for mGlu2 and mGlu3 receptors, respectively. NMDA, CaCl(2), DHPG and kainate were inactive up to 1 mM, whereas LY341495, DCG IV and ibotenate inhibited [(3)H]-LY354740 binding with similar potencies on both receptors. L-CCG I, L-AP4, L-AP5, LY354740 and 1S,3R-ACPD were 2- to 4-fold more potent inhibitors of [(3)H]-LY354740 binding to mGlu2 than mGlu3 receptors. However, MPPG and L-AP3 had a 6-fold and DTT a 28-fold preference for mGlu2 over mGlu3. ZnCl(2), at 10 mM, inhibited more than 70% of [(3)H]-LY354740 binding to mGlu2 receptors. At the same concentration it did not affect significantly [(3)H]-LY354740 binding to mGlu3 receptors. On the contrary, glutamate, quisqualate, EGLU and NAAG showed a 3-, 5-, 7- and 12-fold preference for mGlu3 over mGlu2. Finally, GTPgammaS, which partially inhibited the binding on mGlu2 receptors, was inactive to inhibit [(3)H]-LY354740 binding on mGlu3 receptors. Topics: Amino Acids; Animals; Binding, Competitive; Bridged Bicyclo Compounds; Cell Membrane; Chlorides; CHO Cells; Cricetinae; DNA, Recombinant; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Gene Expression; Genetic Vectors; Glutamic Acid; Guanosine 5'-O-(3-Thiotriphosphate); Kinetics; Rats; Receptors, Metabotropic Glutamate; Semliki forest virus; Tritium; Xanthenes; Zinc Compounds | 2000 |
Design, synthesis, and pharmacological characterization of (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740): a potent, selective, and orally active group 2 metabotropic glutamate receptor agonist possessing anticonvulsant and anxiolytic pr
2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (9) was designed as a conformationally constrained analog of glutamic acid. For 9, the key torsion angles (tau 1 and tau 2) which determine the relative positions of the alpha-amino acid and distal carboxyl functionalities are constrained where tau 1 = 166.9 degrees or 202 degrees and tau 2 = 156 degrees, respectively. We hypothesized that 9 would closely approximate the proposed bioactive conformation of glutamate when acting at group 2 metabotropic glutamate receptors (mGluRs). The racemic target molecule (+/-)-9, its C2-diastereomer (+/-)-16, and its enantiomers (+)-9 (LY354740) and (-)-9 (LY366563) were prepared by an efficient, stereocontrolled, and high-yielding synthesis from 2-cyclopentenone. Our hypothesis that 9 could interact with high affinity and specificity at group 2 mGluRs has been supported by the observation that (+/-)-9 (EC50 = 0.086 +/- 0.025 microM) and its enantiomer (+)-9 (EC50 = 0.055 +/- 0.017 microM) are highly potent agonists for group 2 mGluRs in the rat cerebral cortical slice preparation (suppression of forskolin-stimulated cAMP formation) possessing no activity at other glutamate receptor sites (iGluR or group 1 mGluR) at concentrations up to 100 microM. Importantly, the mGluR agonist effects of (+)-9 are evident following oral administration in mice in both the elevated plus maze model of anxiety (ED50 = 0.5 mg/kg) and in the ACPD-induced limbic seizure model (ED50 = 45.6 mg/kg). Thus, (+)-9 is the first orally active group 2 mGluR agonist described thus far and is an important tool for studying the effects of compounds of this class in humans. Topics: Administration, Oral; Animals; Anti-Anxiety Agents; Anticonvulsants; Bridged Bicyclo Compounds; Colforsin; Cyclic AMP; Drug Design; Excitatory Amino Acid Agonists; Mice; Models, Molecular; Rats; Receptors, Glutamate | 1997 |