kt-5926 has been researched along with tautomycin* in 2 studies
2 other study(ies) available for kt-5926 and tautomycin
Article | Year |
---|---|
Myosin phosphatase and cofilin mediate cAMP/cAMP-dependent protein kinase-induced decline in endothelial cell isometric tension and myosin II regulatory light chain phosphorylation.
This study determined the effects of increased intracellular cAMP and cAMP-dependent protein kinase activation on endothelial cell basal and thrombin-induced isometric tension development. Elevation of cAMP and maximal cAMP-dependent protein kinase activation induced by 10 microm forskolin, 40 microm 3-isobutyl-1-methylxanthine caused a 50% reduction in myosin II regulatory light chain (RLC) phosphorylation and a 35% drop in isometric tension, but it did not inhibit thrombin-stimulated increases in RLC phosphorylation and isometric tension. Elevation of cAMP did not alter myosin light chain kinase catalytic activity. However, direct inhibition of myosin light chain kinase with KT5926 resulted in a 90% decrease in RLC phosphorylation and only a minimal decrease in isometric tension, but it prevented thrombin-induced increases in RLC phosphorylation and isometric tension development. We showed that elevated cAMP increases phosphorylation of RhoA 10-fold, and this is accompanied by a 60% decrease in RhoA activity and a 78% increase in RLC phosphatase activity. Evidence is presented that it is this inactivation of RhoA that regulates the decrease in isometric tension through a pathway involving cofilin. Activated cofilin correlates with increased F-actin severing activity in cell extracts from monolayers treated with forskolin/3-isobutyl-1-methylxanthine. Pretreatment of cultures with tautomycin, a protein phosphatase type 1 inhibitor, blocked the effect of cAMP on 1) the dephosphorylation of cofilin, 2) the decrease in RLC phosphorylation, and 3) the decrease in isometric tension. Together, these data provide in vivo evidence that elevated intracellular cAMP regulates endothelial cell isometric tension and RLC phosphorylation through inhibition of RhoA signaling and its downstream pathways that regulate myosin II activity and actin reorganization. Topics: Actins; Animals; Carbazoles; Cattle; Cells, Cultured; Colforsin; Cyclic AMP; Cyclic AMP-Dependent Protein Kinase Type II; Cyclic AMP-Dependent Protein Kinases; Endothelium, Vascular; Immunoprecipitation; Indoles; Models, Biological; Myosin Light Chains; Myosin Type II; Myosin-Light-Chain Phosphatase; Phosphorylation; Pulmonary Artery; Pyrans; rhoA GTP-Binding Protein; Signal Transduction; Spiro Compounds; Time Factors | 2005 |
Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells.
The role of Rho GTPase and its downstream targets Rho kinase and myosin light chain phosphatase in thrombin-induced endothelial cell contraction was investigated. The specific Rho inactivator C3-transferase from Clostridium botulinum as well as microinjection of the isolated Rho-binding domain of Rho kinase or active myosin light chain phosphatase abolished thrombin-stimulated endothelial cell contraction. Conversely, microinjection of constitutively active V14Rho, constitutively active catalytic domain of Rho kinase, or treatment with the phosphatase inhibitor tautomycin caused contraction. These data are consistent with the notion that thrombin activates Rho/Rho kinase to inactivate myosin light chain phosphatase in endothelial cells. In fact, we demonstrate that thrombin transiently inactivated myosin light chain phosphatase, and this correlated with a peak in myosin light chain phosphorylation. C3-transferase abolished the decrease in myosin light chain phosphatase activity as well as the subsequent increase in myosin light chain phosphorylation and cell contraction. These data suggest that thrombin activates the Rho/Rho kinase pathway to inactivate myosin light chain phosphatase as part of a signaling network that controls myosin light chain phosphorylation/contraction in human endothelial cells. Topics: ADP Ribose Transferases; Alkaloids; Antifungal Agents; Botulinum Toxins; Carbazoles; Cells, Cultured; Cytoskeletal Proteins; Endothelium, Vascular; Enzyme Inhibitors; Humans; Indoles; Intracellular Signaling Peptides and Proteins; Myosin-Light-Chain Kinase; Myosin-Light-Chain Phosphatase; Okadaic Acid; Phosphoprotein Phosphatases; Protein Serine-Threonine Kinases; Pyrans; rho-Associated Kinases; Spiro Compounds; Thrombin | 1998 |