kt-5720 and barium-chloride

kt-5720 has been researched along with barium-chloride* in 2 studies

Other Studies

2 other study(ies) available for kt-5720 and barium-chloride

ArticleYear
Role of the cyclic-AMP/PKA cascade and of P/Q-type Ca++ channels in endocannabinoid-mediated long-term depression in the nucleus accumbens.
    Neuropharmacology, 2008, Volume: 54, Issue:1

    Glutamate transmission between prefrontal cortex (PFC) and accumbens (NAc) plays a crucial role in the establishment and expression of addictive behaviors. At these synapses exogenous cannabinoid receptor 1 (CB1R) agonists reversibly inhibit excitatory transmission, and the sustained release of endogenous cannabinoids (eCB) following prolonged cortical stimulation leads to long-term depression (LTD). Activation of presynaptic K(+) channels mediates the effects of exocannabinoids, but the transduction pathway underlying the protracted phase of eCB-LTD is unknown. Here we report that the maintenance of eCB-LTD does not involve presynaptic K(+) channels: eCB-LTD was not affected by blockade of K(+) channels with 4-AP (100 microM) and BaCl(2) (300 microM) (fEPSP=78.9+/-5.4% of baseline 58-60 min after tetanus, compared to 78.9+/-5.9% in control slices). In contrast, eCB-LTD was blocked by treatment of the slices with the adenylyl cyclase (AC) activator forskolin (10 microM), and with the protein kinase A (PKA) inhibitor KT5720 (1 microM) (fEPSP=108.9+/-5.7% in forskolin and 110.5+/-7.7% in KT5720, compared to 80.6+/-3.9% in control conditions). Additionally, selective blockade of P/Q-type Ca(2+) channels with omega-agatoxin-IVA (200 nM) occluded the expression of eCB-LTD (fEPSP=113.4+/-15.9% compared to 78.6+/-4.4% in control slices), while blockade of N- with omega-conotoxin-GVIA (1 microM) or L-type Ca(2+) channels with nimodipine (1 microM), was without effect (fEPSP was 83.7+/-5.3% and 87+/-8.9% respectively). These data show that protracted inhibition of AC/PKA activity and P/Q-type Ca(2+) channels are necessary for expression of eCB-LTD at NAc synapses.

    Topics: 4-Aminopyridine; Action Potentials; Animals; Barium Compounds; Calcium; Calcium Channel Blockers; Calcium Channels, P-Type; Cannabinoid Receptor Modulators; Carbazoles; Chlorides; Colforsin; Cyclic AMP; Electric Stimulation; Endocannabinoids; Enzyme Inhibitors; In Vitro Techniques; Indoles; Long-Term Synaptic Depression; Male; Mice; Mice, Inbred C57BL; Nucleus Accumbens; Patch-Clamp Techniques; Potassium Channel Blockers; Pyrroles; Signal Transduction

2008
The relaxant effect of urocortin in rat pulmonary arteries.
    Regulatory peptides, 2004, Sep-15, Volume: 121, Issue:1-3

    Urocortin is a potent vasodilator, which plays physiological or pathophysiological roles in systemic circulation. However, little is known about its action on pulmonary circulation. The present study was aimed to characterize some cellular mechanisms underlying the relaxant effect of urocortin in isolated rat pulmonary arteries. Changes in isometric tension were measured on small vessel myographs. Urocortin inhibited U46619-induced contraction with reduction of the maximal response. Urocortin-induced relaxation was independent of the presence of endothelium. Inhibitors of nitric oxide (NO)-dependent dilator, NG-nitro-L-arginine methyl ester or 1H-[1,2,4]oxadizolo[4,3-a]quinoxalin-1-one, did not affect the relaxation. Astressin (100-500 nM), a corticotropin-releasing factor (CRF) receptor antagonist and KT5720, a protein kinase A (PKA) inhibitor reduced urocortin-induced relaxation. Urocortin produced less relaxant effect in 30 mM K+- than U46619-contracted arterial rings. Urocortin did not reduce CaCl2-induced contraction in 60 mM K+-containing solution. Ba2+ (100-500 microM) but not other K+ channel blockers reduced the relaxant responses to urocortin. Urocortin also relaxed the rings preconstricted by phorbol 12,13-diacetae in normal Krebs solution while this relaxation was less in a Ca2+-free solution. Our results show that urocortin relaxed rat pulmonary arteries via CRF receptor-mediated and PKA-dependent but endothelium/NO or voltage-gated Ca2+ channel-independent mechanisms. Stimulation of Ba2+-sensitive K+ channel may contribute to urocortin-induced relaxation. Finally, urocortin relaxed pulmonary arteries partly via inhibition of a PKC-dependent contractile mechanism.

    Topics: Animals; Barium Compounds; Carbazoles; Chlorides; Corticotropin-Releasing Hormone; Endothelium; Indoles; Muscle Relaxation; Nitric Oxide; Potassium Channel Blockers; Potassium Channels; Protein Kinase C; Pulmonary Artery; Pyrroles; Rats; Urocortins

2004