ko-143 and tariquidar

ko-143 has been researched along with tariquidar* in 4 studies

Other Studies

4 other study(ies) available for ko-143 and tariquidar

ArticleYear
Tariquidar-related triazoles as potent, selective and stable inhibitors of ABCG2 (BCRP).
    European journal of medicinal chemistry, 2020, Apr-01, Volume: 191

    Tariquidar derivatives have been described as potent and selective ABCG2 inhibitors. However, their susceptibility to hydrolysis limits their applicability. The current study comprises the synthesis and characterization of novel tariquidar-related inhibitors, obtained by bioisosteric replacement of the labile moieties in our previous tariquidar analog UR-ME22-1 (9). CuAAC ("click" reaction) gave convenient access to a triazole core as a substitute for the labile amide group and the labile ester moiety was replaced by different acyl groups in a Sugasawa reaction. A stability assay proved the enhancement of the stability in blood plasma. Compounds UR-MB108 (57) and UR-MB136 (59) inhibited ABCG2 in a Hoechst 33342 transport assay with an IC

    Topics: ATP Binding Cassette Transporter, Subfamily G, Member 2; Dose-Response Relationship, Drug; Humans; KB Cells; MCF-7 Cells; Molecular Structure; Neoplasm Proteins; Quinolines; Structure-Activity Relationship; Triazoles; Tumor Cells, Cultured

2020
HM30181 Derivatives as Novel Potent and Selective Inhibitors of the Breast Cancer Resistance Protein (BCRP/ABCG2).
    Journal of medicinal chemistry, 2015, May-14, Volume: 58, Issue:9

    The breast cancer resistance protein (BCRP, ABCG2) belongs to the superfamily of ATP binding-cassette (ABC) proteins. In addition to other physiological functions, it transports potentially cell-damaging compounds out of the cell using the energy from ATP hydrolysis. Certain tumors overexpressing BCRP were found to become resistant against various anticancer drugs. In previous work, we found that tariquidar analogues lacking the tetrahydroisoquinoline moiety selectively inhibit BCRP. In the present study, we synthesized 21 derivatives of the third-generation P-gp inhibitor HM30181, which is structurally related to tariquidar. The compounds were tested for their inhibitory activities against BCRP and screened against P-glycoprotein (P-gp, ABCB1) and multidrug resistance protein 1 (MRP1, ABCC1) to confirm the selectivity toward BCRP. The most potent compounds are selective toward BCRP and 2-fold more potent than the reference Ko143. Qualitative structure-activity relationship (SAR) analysis revealed that the presence of a methoxy group in the ortho or para position of at least one phenyl ring is beneficial for inhibitory activity. Furthermore, the cytotoxicity and multidrug resistance (MDR)-reversal ability of selected compounds were investigated. It was shown that they have a low cytotoxicity and the ability to reverse the BCRP-mediated SN-38 resistance.

    Topics: Animals; Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Benzopyrans; Cell Line, Tumor; Cell Survival; Dogs; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Isoquinolines; Madin Darby Canine Kidney Cells; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Quantitative Structure-Activity Relationship; Quinolines; Tetrazoles

2015
Potent and selective inhibitors of breast cancer resistance protein (ABCG2) derived from the p-glycoprotein (ABCB1) modulator tariquidar.
    Journal of medicinal chemistry, 2009, Feb-26, Volume: 52, Issue:4

    The efflux pumps ABCB1 (p-gp, MDR1) and ABCG2 (BCRP) are expressed to a high extent by endothelial cells at the blood-brain barrier (BBB) and other barrier tissues and are involved in drug resistance of tumor (stem) cells. Whereas numerous ABCB1 inhibitors are known, only a few ABCG2 modulators with submicromolar activity have been published. Starting from tariquidar (4) analogues as ABCB1 modulators, minimal structural modifications resulted in a drastic shift in favor of ABCG2 inhibition. Highest potency was found when the 3,4-dimethoxy-2-(quinoline-3-carbonylamino)benzoyl moiety in 4 was replaced with a 4-methoxycarbonylbenzoyl moiety bearing a hetarylcarboxamido group in 3-position, e.g., quinoline-3-carboxamido (5, IC(50): 119 nM) or quinoline-2-carboxamido (6, IC(50): 60 nM, flow cytometric mitoxantrone efflux assay, topotecan-resistant MCF-7 breast cancer cells); the selectivity for ABCG2 over ABCB1 was about 100-500 fold and the compounds were inactive at ABCC2 (MRP2). Chemosensitivity assays against MCF-7/Topo cells revealed that the nontoxic inhibitor 6 completely reverted ABCG2-mediated topotecan resistance at concentrations >100 nM, whereas 5 showed ABCG2 independent cytotoxicity. ABCG2 inhibitors might be useful for cancer treatment with respect to reversal of multidrug resistance, overcoming the BBB and targeting of tumor stem cells.

    Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Breast Neoplasms; Cell Line, Tumor; Drug Resistance, Multiple; Female; Humans; Inhibitory Concentration 50; Multidrug Resistance-Associated Protein 2; Neoplasm Proteins; Quinolines; Structure-Activity Relationship

2009
Structure-activity relationships of new inhibitors of breast cancer resistance protein (ABCG2).
    Bioorganic & medicinal chemistry, 2008, Sep-01, Volume: 16, Issue:17

    At the end of the last century tariquidar (XR9576) was synthesized, pharmacologically investigated, and classified as a promising 3rd generation P-glycoprotein (P-gp) modulator. Following the discovery of BCRP in 1998 an increasing number of substances were studied in relation to their potency to interact with this transporter. Recently it has been shown that XR9576 inhibits both P-gp and BCRP transport function similarly to GF120918 (elacridar). This observation prompted us to investigate 5 XR compounds and 25 structurally related derivatives synthesized in our laboratory for their BCRP inhibitory effect. The biological activity data were determined by our new Hoechst 33342 assay that has been transferred from P-gp to BCRP overexpressing cells. 3D-QSAR models (CoMFA and CoMSIA) were generated and validated by the leave-many-out method and the scrambling stability test. The best models yielded an internal predictive squared correlation coefficient higher than 0.8 and contained steric, electrostatic, hydrophobic, and hydrogen bond donor fields. To our knowledge, this is the first 3D-QSAR analysis of BCRP inhibitors. Additionally the biological activity data determined in P-gp overexpressing cells on one side and BCRP overexpressing cells on the other side were compared to identify selective and non-selective inhibitors of P-gp and BCRP. The results may help to get a better insight which structural elements are necessary to direct the interaction of these compounds with P-gp and/or BCRP.

    Topics: ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Breast Neoplasms; Crystallography, X-Ray; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Female; Humans; Models, Molecular; Molecular Structure; Neoplasm Proteins; Phthalic Acids; Quantitative Structure-Activity Relationship; Quinolines; Reproducibility of Results; Stereoisomerism; Time Factors; Tumor Cells, Cultured

2008
chemdatabank.com