ketorolac has been researched along with penicillamine in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (40.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Chen, M; Fang, H; Liu, Z; Shi, Q; Tong, W; Vijay, V | 1 |
Bellman, K; Knegtel, RM; Settimo, L | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Granados-Soto, V; Lázaro-Ibáñez, GG; Torres-López, JE | 1 |
1 review(s) available for ketorolac and penicillamine
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
4 other study(ies) available for ketorolac and penicillamine
Article | Year |
---|---|
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
FDA-approved drug labeling for the study of drug-induced liver injury.
Topics: Animals; Benchmarking; Biomarkers, Pharmacological; Chemical and Drug Induced Liver Injury; Drug Design; Drug Labeling; Drug-Related Side Effects and Adverse Reactions; Humans; Pharmaceutical Preparations; Reproducibility of Results; United States; United States Food and Drug Administration | 2011 |
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation | 2014 |
Participation of the nitric oxide-cyclic GMP-ATP-sensitive K(+) channel pathway in the antinociceptive action of ketorolac.
Topics: Adenosine Triphosphate; Analgesics; Animals; Behavior, Animal; Cyclic AMP; Dose-Response Relationship, Drug; Enzyme Inhibitors; Female; Glyburide; Guanylate Cyclase; Ketorolac; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Oxadiazoles; Pain; Pain Measurement; Penicillamine; Potassium Channels; Quinoxalines; Rats; Rats, Wistar; Signal Transduction | 2001 |